Transportation Energy Futures **Project Overview and Findings** ### **Transportation Energy Futures** #### **Outline** - Approach and motivation for the study - Key findings from primary topic areas - Study conclusions regarding transportation energy consumption and emissions reduction potential. ### Transportation Energy Futures: A Landmark Collaboration - TEF is a project implemented by EERE, ANL, NREL, and draws upon broad expertise from EPA, DOT, academia, and private sector advisors to address underexplored opportunities in transportation. - TEF is cross-sector; it includes elements for light-duty, non-light duty, fuels, and transportation demand. - TEF consists of nine published technical reports as well as summary material. #### **Scoping and Review** - Built on a foundation of previous and ongoing DOE, DOT, and EPA analysis - Selected a 19-member steering committee of experts from industry, academia, government, and non-profits - Refined the topic list into a set of highest-priority issues to cover in partnership between the steering committee and project team - Engaged experts for extensive peer review throughout the project. #### **Scoping and Review** Ongoing Analysis (DOE, EPA, DOT, etc.) ### **Key Findings/Modes** ### Current transportation energy use is closely split between LDV and Non-LDV 2011: 27.4 quadrillion Btu of transportation energy use ### Vehicle efficiency improvements are essential to balance increases in travel and freight demand ### Effects of vehicle efficiency improvements and use increases on net energy consumption by 2050 | | LDVs | Trucks | Aviation | Inland
Marine | Ocean
Marine | Rail | Pipeline | Off-road | |---|--------------|--------|-------------------|------------------|-------------------|------------------|----------|------------------| | Vehicle
energy
efficiency
improvements | 61% | 50% | 65% | 30% | 75% | 35% | 20% | 18% | | Vehicle use increases | 7 5%ª | 87%ª | 217% ^b | 32%ª | 450% ^c | 47% ^a | 16%ª | 20% ^d | | Net changes
in total energy
consumption | -32% | -17% | +11% | -8% | +38% | -4% | +1% | -6% | ^a EIA projections extrapolated. ^b FAA projections extrapolated. ^c Growth in dollar value of trade (EIA). ^d Projected at half the population growth. ### Advanced vehicles have the potential to dominate the LDV market by 2050 See studies for additional scenario vehicle mixes.. ### Non-cost barriers to adoption of advanced vehicles must be overcome to reach such scenarios | Non-Cost Barrier | Relevant Factors | Possible Policy Responses | | | |---|--|--|--|--| | Limited driving range and fueling/charging stations | Vehicle rangeDriver mobility needsLocal conditionsDriver's value of time | Subsidization of charging/
fueling stationsInformation | | | | Unfamiliarity Lack of awareness Bias or perceived | Prevalence of new technology Preferences of early adopters Social and behavioral | LabelingInformationOutreach programsInformation | | | | negative differences • Uncertainty of benefits | factors | Outreach programs | | | | Lack of adequate standards | Maturity of new technologies Potential for incompatibilities or safety issues | Testing and standards development | | | | Limited availability in models/makes | Consumer preferencesModularization of design
and manufacturing | R&D on modularization | | | ### **Key Findings: Fuels** ## Petroleum is the dominant fuel for the current transportation system 2011: 27.4 Quadrillion Btu of transportation energy use # Biofuels can displace significant volumes of petroleum in future fuel markets #### Total fuel retail capital costs remain small relative to total annual fuel costs in advanced fuel scenarios #### **Total Fuel Costs to Consumers Total Capital Cost for Retail Stations** (\$billion/year) #### **Capital Costs for Retail Infrastructure Components** (\$ billion/year) under four example scenarios #### **Key Findings: Service Demand** # Coordinated demand reduction strategies can lead to significant savings while maintaining service quality | Demand
Reduction
Strategy | Impact Type | Potential
Magnitude of
Impact | |---|-----------------------|-------------------------------------| | Built
Environment
Characteristics | LDV
VMT reduction | 12-18%
(15% used for
summary) | | Trip Reduction | LDV
VMT reduction | 1-10%
(5% used for
summary) | | Efficient Driving | MPG
improvement | 1-5%
(5% used for
summary) | | Non-LDV
Mode Switching | Ton-miles
switched | <10%
(10% used for
summary) | #### **Transportation Demand** 2011: 27.4 quadrillion Btu of transportation energy use # TEF Conclusions: Deep reductions in transportation energy use are technically possible by 2050... #### **Projected 2050 Petroleum Use and Potential Reductions** ### ...As are deep reductions in transportation greenhouse gas emissions (Source: Summary of prior values in presentation) #### For More Information - TEF Website with papers: http://www1.eere.energy.gov/analysis/ transportationenergyfutures/ - TEF represented in an online scenario analysis tool: https://bites.nrel.gov/inputs.php?id=1146 - Many of the vehicle and fuel cost assumptions are also in the "Transparent Cost Database," available at: openei.org/tcdb/ - For questions, contact <u>eere.analysis@EE.Doe.Gov</u>.