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Accurate short-term solar forecasting is necessary for operating a reliable grid with high penetrations 
of solar energy. Machine learning techniques have shown promise for making more accurate short-
term forecasts. In this study, a framework for assessing the solar forecasting performance of four 
popular machine learning algorithms is presented in conjunction with a range of numerical results 
using global horizontal irradiance (GHI) from the open-source SURFace RADiation data network. 
Training inputs include time series observations of GHI for a history of years, in addition to various 
other weather measurements, such that training sensitivities can be inferred. Prediction outputs include 
GHI forecasts up to four hours ahead of the forecast time. The suite of machine learning algorithms is 
compared according to a set of statistically distinct metrics and benchmarked against a landmark study 
and the persistence-of-cloudiness forecast. Results show significant improvement over the benchmark 
in most forecasting situations among the machine learning algorithms based on the spatial and 
temporal situations they are forecasting. Improved solar irradiance forecast can be combined with 
photovoltaic power and energy outputs to better understand power system impacts of integrating 
variable renewable energy sources. 
	



Process: 
   • Relevant weather features from 11 years
   of data at 1 or 3 minute resolutions. 
   • Split: 10 years = training; 1 year = testing. 

   • Preprocess: clean data, time-shift future GHI 
   values, tune ML hyper-parameters, etc. 
   • Train then test 4 ML models for each 
   temporal and geographic situation. 
   • Use validation metrics to discover the best 
   ML model to use per situation. 

 
   Process for future applications: 
   • The trained ML models are then ready for 
   use with real time weather observations. 
   This allows for more accurate solar power 
                 forecasting for grid operators. 
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BACKGROUND 

Motivation: 
   • Integrating high levels of solar energy into the grid poses technical challenges    
     for grid operators. Improvements in short-term solar forecasting will increase   
     grid reliability and minimize economic losses. 
   • Machine learning (ML) approaches show potential for improving short-term  
     solar irradiance forecasts. ML allows computers to learn and predict without 
     being explicitly programmed. Use of Big Data creates more powerful models.  
  
Research goal: 
   • Find optimal machine learning (ML) algorithm for predicting short-term solar  
     irradiance (1, 2, 3, and 4 hours ahead) depending on the geographic location,  
     time of year, and forecast horizon (f.h.) of each forecasting situation. 

• Random Forests (RFs) average the predictions across an  
  ensemble of decision trees. Each tree directs input signals 
  through a series of decision nodes to a final output. 
  
• Artificial Neural Networks (ANNs) simulate the neural 
  networks found in the brain. Input signals are assigned 
  weights that activate nodes as they propagate through the   
  network. Weights are then adjusted with back propagation.  
 
• Support Vector Machines (SVMs) work by transforming 
  a non-linearly separable input space into a higher  
  dimensional feature space where variables can be separated  
  by a 3-D hyperplane. 
 
• Gradient Boosting (GB) is a method similar to RFs, but 
  instead adds new decision trees one at a time that are 
  specifically built to correct for residual errors in the already 
  trained ensemble of trees. This is opposed to RFs building     
  and adding trees using random feature selection.  

 Terminology: 
   • Global horizontal irradiance (GHIt):   
     sum of instantaneous direct and diffuse 
     solar irradiance measured in W/m2. 
   • Clear sky GHI (GHIt

clear):  theoretical  
     maximum GHI for an instantaneous  
     point forecast assuming zero cloud 
     coverage. 
   • Clear sky index (CSIt):  metric of  
     cloud cover defined as the ratio between 
     GHIt and GHIt

clear. CSI is the most indicative weather feature for GHI. 

  

Time Temp Humidity Wind Speed Wind Direction Pressure Thermal IR GHIt GHIt
clear CSIt CSIf.h.

average 
1200 20.7 71.3 5.2 54.6 838 403.4 816.3 870.4 .9378 .4407 

• • • • • • 

• • • • • • 

• • • • • • 

1400 18.3 74.1 5.6 48.7 834 401.4 438.7 816.8 .5371 .392 
• • • • • • • • • 

• • • • • • • • • 

• • • • • • • • • 

• • • • • • • • • 

• • • • • • • • • 

1500 17.8 76.5 5.5 49.7 832 401.1 270.7 786.3 .3443 • • • 
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CONCLUSION 
Discussion: 
  • Results show a ~25% forecasting improvement over the benchmark in Boulder. 
  • Forecasts benefit from the availability of a selection of 4 ML methods, as the   
    individual ML algorithms perform differently depending on the geographic and   
    temporal forecasting situations. 
  • Artificial Neural Network is the newest ML method being employed and is  
    producing the best results in this study. Results may be further improved by  
    optimizing hyper-parameters specific to the different forecasting situations. 
  • A ML approach using ground measured weather observations can help advance 
    short-term solar irradiance forecasting accuracy.  Improved forecasts will help  
    facilitate higher penetrations of solar energy into the grid. 
Future work: 
      This solar power forecasting methodology can be extended by increasing the 
forecast horizon resolution from hourly increments to 5 minute increments, giving 
grid operators more dynamic information about upcoming ramping events. Further 
work should also look into optimizing ML hyper-parameters for each situation 
dependent forecast. 
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Fig. 1:  TJO (2015, June 4).  Machine learning for package users with R (5): Random Forest. Data Scientist TJO in Tokyo. Retrieved July 31st, from 
             http://tjo-en.hatenablog.com/entry/2015/06/04/190000 
Fig. 2:  Schutter, E. (2008, May). What are computational neuroscience and systems biology so separate? PLOS Computational Biology. Vol. 4 (5) 
             Retrieved August 1st, 2017, from https://neuwritesd.org/2017/03/31/golden-retrievers-terriers-and-artificial-neural-networks/  
Fig. 3:  Dante (2017, March 13). Kernel trick explanation. Stack Exchange: Data Science. Retrieved August 1st, 2017, from  
             https://datascience.stackexchange.com/questions/17536/kernel-trick-explanation    
Fig. 4:  George, D. (2015, December 20). Decision tree ensembles: bagging, random forest, and gradient boosting machines. Machine Learning Lecture, Indian Institute of  
             Management, Bangalore. Retrieved August 1st, from, https://www.slideshare.net/DeepakGeorge5/decision-tree-ensembles-bagging-random-forest-gradient-boosting-machines 
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Time-shifted GHI forecasts: 
   • Rather than training on instantaneous GHI values 1, 2, 3, or 4 hours ahead,      
     which may not be representative of the most probable GHI f.h., ML models  
     train on the average CSI for the hour ending at the forecast horizon (f.h.),     
     which is then multiplied by GHI f.h.

clear to produce a most likely GHI forecast. 

Figure 8:  Example of 1 of 1,344 ML models built in this 
study. Figure shows building an Artificial Neural Network 
to predict GHI values four hours ahead in Penn State, PA, 
during the month of February. The predictions from each 
model are then compared to the actual observed values 
and a suite of validation metrics generates error values. 

Situation dependent forecasts: 
    (7 sites) • (12 months) • (4 forecast horizons) • (4 ML models) = 1,344 models 

Fig 7:  Example of time series weather observations.  The last column   
is the time shifted y-variable; the forecast horizon’s  clear sky index. 

Ex:  Input training instance for 3 hour ahead forecasts.                                 Time shifted training output  

Mostly sunny weather 

60 minutes of mostly 
cloudy weather 
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Fig. 6:  Big data flow from historical observations, to optimized ML 
models, to real time grid operations. 

Time-shifted 
training output 

Machine learning methods: 
            (Various hyper-parameters are used to tune each model) 

 

1200 21.4 72.0 4.3 52.6 838 403.9 811.4 871.9 .9306 ? .4358 

Ex:  Unseen testing vector.                                 ML models take input and make a prediction for output 

GHI3:00
prediction = ~786.3 W/m2  •  .4358 = 342.7 W/m2 
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Fig 1:  Ideal vs. actual time-series irradiance. 

Frequency RF SVM ANN GBM 
1 hour 3 10 15 8 
2 hour 7 8 12 9 
3 hour 9 4 17 6 
4 hour 14 6 13 3 
Winter 3 0 6 3 
Spring 0 2 9 1 

Summer 2 3 5 2 
Fall 3 3 3 3 
CO 13 7 21 7 
IL 10 10 17 11 

MS 10 11 19 8 

 • Error Metric:  Root Mean Square Error (RMSE)  =  W/m2       

(Results still being produced for four of seven locations) 

                Performance of Different ML Models                ML forecasts vs. Benchmark (bcm) forecasts 

           Seasonal Forecasts per Forecast Horizon (IL) 

Fig. 9:  The ML models perform differently depending on the time  
  of year, location, and forecast horizon.  Having a selection of  
  models lowers overall yearly prediction errors. 

Fig. 10:  Forecasting is improved in all situations in CO against a  
  benchmark, and is improved under certain forecast horizons in  
  other locations. 

Fig. 11:  Table shows the frequency of each ML model in forecasting 
  the lowest RMSE across all permutations of certain situations.  
  Artificial Neural Networks out perform the other three models in the  
  tests run so far. 

Fig. 12:  Forecasting errors increase with increasing short-term  
  forecast horizons, and Spring and Summer months tend to be the  
  hardest to forecast.  All months, sites, and forecast horizons will be  
  compared when current tests produce results for other four sites. 


