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Accurate short-term solar forecasting is necessary for operating a reliable grid with high penetrations
of solar energy. Machine learning techniques have shown promise for making more accurate short-
term forecasts. In this study, a framework for assessing the solar forecasting performance of four
popular machine learning algorithms is presented in conjunction with a range of numerical results
using global horizontal irradiance (GHI) from the open-source SURFace RADiation data network.
Training inputs include time series observations of GHI for a history of years, in addition to various
other weather measurements, such that training sensitivities can be inferred. Prediction outputs include
GHI forecasts up to four hours ahead of the forecast time. The suite of machine learning algorithms is
compared according to a set of statistically distinct metrics and benchmarked against a landmark study
and the persistence-of-cloudiness forecast. Results show significant improvement over the benchmark
in most forecasting situations among the machine learning algorithms based on the spatial and
temporal situations they are forecasting. Improved solar irradiance forecast can be combined with
photovoltaic power and energy outputs to better understand power system impacts of integrating
variable renewable energy sources.
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* Results show a ~25% forecasting improvement over the benchmark in Boulder.

» Forecasts benefit from the availability of a selection of 4 ML methods, as the
individual ML algorithms perform differently depending on the geographic and
temporal forecasting situations.

* Artificial Neural Network is the newest ML method being employed and is
producing the best results in this study. Results may be further improved by
optimizing hyper-parameters specific to the different forecasting situations.
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« Artificial Neural Networks (ANNs) simulate the neural
networks found in the brain. Input signals are assigned
weights that activate nodes as they propagate through the
network. Weights are then adjusted with back propagation.
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