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Project Introduction 
This initiative, referred to as Behind-the-Meter Storage (BTMS), focuses on novel critical-materials-free 
battery technologies to facilitate the integration of electric vehicle (EV) charging, solar power-generation 
technologies, and energy-efficient buildings while minimizing both costs and grid impacts. For extreme fast-
charging at levels of 350 kW or higher, novel approaches are required to avoid significant negative cost and 
resiliency impacts. However, it is reasonable to assume that BTMS solutions would be applicable to other 
intermittent renewable energy generation sources or short-duration, high-power-demand electric loads. 
BTMS research is targeted at developing innovative energy-storage technology specifically optimized for 
stationary applications below 10 MWh that will minimize the need for significant grid upgrades. Additionally, 
avoiding excessive high power draws will eliminate excess demand charges that would be incurred during 350-
kW fast-charging using current technologies. The key to achieving this is to leverage battery-storage solutions 
that can discharge at high power but be recharged at standard lower power rates, acting as a power reservoir to 
bridge to the grid and other on-site energy-generation technologies such as solar photovoltaics (PV), thereby 
minimizing costs and grid impacts. To be successful, new and innovative integration treatments must be 
developed for seamless interaction between stationary storage, PV generation, building systems, and the 
electric grid.  

Key components of BTMS address early-stage research into new energy-generation and building-integration 
concepts, critical-materials-free battery energy-storage chemistries, and energy-storage designs with a focus on 

mailto:anthony.burrell@nrel.gov
mailto:samuel.gillard@ee.doe.gov


 

new stationary energy-storage strategies that will balance performance and costs for expanded fast-charging 
networks while minimizing the need for grid improvements. 
 

Objectives 
A cohesive multidisciplinary research effort is being taken to create a cost-effective, critical-materials-free 
solution to BTMS by employing a whole-systems approach. The focus of this initiative is to develop 
innovative battery energy-storage technologies with abundant materials applicable to EVs and high-power 
charging systems. Solutions in the 1‒10 MWh range will eliminate potential grid impacts of high-power EV 
charging systems as well as lower installation costs and costs to the consumer.   

Although many lessons learned from EV battery development may be applied to the BTMS program, the 
requirements for BTMS systems are unique—carrying their own calendar-life, cycle-life, and cost challenges.  
For example, EV energy-storage systems need to meet very rigorous energy-density and volume requirements 
to meet consumer transportation needs. Despite that, current stationary storage systems use batteries designed 
for EVs due to high volumes that drive down costs. This creates another market demand for EV batteries, 
further straining the EV battery supply chain and critical-material demand.  

By considering BTMS electrochemical solutions optimized for these applications with less focus on energy 
density in mass and volume, the potential for novel battery solutions is very appealing. Furthermore, the 
balance of plant (BOP) cost for a BTMS battery system—or, the cost of everything minus the battery cells—is 
thought to be upwards of 60% of the total energy-storage system cost. In contrast, the BOP costs of EVs make 
up roughly 30% of the total battery cost. Therefore, to realize desired cost targets, BTMS will also need to 
focus on reducing BOP cost through system optimization.   

Design parameters are needed to optimize the BTMS system for performance, reliability, resilience, safety, and 
cost. 

The objectives of the project are to: 

• Produce BTM battery solutions that can be deployed at scale and meet the functional requirement of 
high-power EV charging. 

• Use a total-systems approach for battery storage to develop and identify the specific functional 
requirements for BTMS battery solutions that will provide novel battery systems in the 1‒10-MWh range 
at $100/kWh installed cost—and that are able to cycle twice per day, discharging for at least 4 hours, 
with a lifetime of roughly 20 years or at least 8,000 cycles. 

Approach 
A cohesive multidisciplinary research effort—involving the National Renewable Energy Laboratory (NREL), 
Idaho National Laboratory (INL), Sandia National Laboratories (SNL), and Argonne National Laboratory 
(ANL)—will create a cost-effective, critical-materials-free solution to BTMS by employing a whole-systems 
approach. The focus of this initiative is to develop innovative battery energy-storage technologies with 
abundant materials applicable to PV energy generation, building energy-storage systems, EVs, and high-power 
charging systems. Solutions in the 1‒10-MWh range will enable optimal integration of PV generation from a 
DC-DC connection, increase energy efficiency of buildings, eliminate potential grid impacts of high-power EV 
charging systems, and lower installation costs and costs to the consumer.   

Many lessons learned from EV battery development may be applied to the BTMS program, but the 
requirements for BTMS systems are unique—carrying their own calendar-life, cycle-life, and cost challenges.  
For example, EV energy-storage systems need to meet very rigorous energy-density and volume requirements 
to meet consumer transportation needs. Despite that, current stationary storage systems use batteries designed 
for EVs due to high volumes that drive down the costs. This creates another market demand for EV batteries, 
further straining the EV battery supply chain and critical-material demand.  
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By considering BTMS electrochemical solutions optimized for these applications with less focus on energy 
density in mass and volume, the potential for novel battery solutions is very appealing. Furthermore, the BOP 
cost for a BTMS battery system, or the cost of everything minus the battery cells, is thought to be upwards of 
60% of the total energy-storage system cost. In contrast, the BOP costs for EVs make up roughly 30% of the 
total battery cost. Therefore, BTMS will also need to focus on reducing BOP cost through system optimization 
to realize desired cost targets.   

Integration of battery storage with PV generation, energy-efficient buildings, charging stations, and the electric 
grid will enable new and innovative control strategies. Design parameters are needed to optimize the BTMS 
system for performance, reliability, resilience, safety, and cost. 
 

Figure 1. Overview of BTMS relevance. 

 
Quarter 3 Milestone: 

Due to the disruptions of the past quarter, all Q3 milestones have been delayed into Q4. 

  



 

 

BTMS Analysis: Financial Metrics 

National Renewable Energy Laboratory (NREL) 
Margaret Mann, Madeline Gilleran, Chad Hunter, Darice Guittet, Matt Mitchell, Eric Bonnema, Jason 
Woods, Monisha Shah, Karl Heine 

Summary 
This Q3 Milestone report discusses the various financial metrics computed in the EnStore program and the 
preliminary methodology used to obtain these metrics. In determining and computing appropriate financial 
metrics, the “Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies” 
was referenced and the existing System Advisor Model (SAM) cash-flow calculator was used, such that 
financial metrics are consistent with prior NREL and EERE research and tools (Short et al., 1995; Blair et al., 
2018). Because a summary of range and probability distributions of EV electric load profiles was completed 
and reported on in the Q2 Milestone report, no further information will be provided in this report; but any 
questions regarding these results are welcome. 
 

Background 
The BTMS Analysis project is funded by the Buildings Technologies Office (BTO), Vehicle Technologies 
Office (VTO), and the Solar Energy Technologies Office (SETO) within the Department of Energy’s (DOE’s) 
Office of Energy Efficiency and Renewable Energy (EERE). The mission of EERE is to create and sustain 
American leadership in the transition to a global clean-energy economy. Its vision is a strong and prosperous 
America powered by clean, affordable, and secure energy. Increasing adoption of electric vehicles (EV), solar 
photovoltaic (PV) electricity generation, battery and thermal storage, and energy-efficient building 
technologies is expected to have a significant impact on energy use and domestic manufacturing. Although 
each of these technologies can make contributions to the U.S. economy, integrating them in ways that optimize 
cost and energy flows for varying energy demand and climate conditions across the country can lead to 
multiple positive impacts. 

BTMS research is targeted at developing innovative energy storage technology specifically optimized for 
stationary applications that will enable fast charging of EVs, allow for enhanced grid-interactive energy-
efficient buildings coupled with PV resources, all while minimizing grid impacts. 

EV adoption is expected to grow significantly over the coming years, and it could have a significant, and 
potentially negative, effect on grid infrastructure due to large and irregular electricity demands. This is further 
complicated by the growth of variable-generation renewable energy technologies such as PV. In response to 
these changes, utilities are evaluating multiple options for managing dynamic loads, including time-of-use 
pricing and demand charges. Buildings and EV charging stations can leverage energy storage, including 
battery and thermal energy storage, coupled with on-site generation to stabilize the grid, manage energy costs, 
and provide resiliency and reliability for EV charging and building energy loads. 
 
The key question in this project is the following: What are the optimal system designs and energy flows for 
thermal and electrochemical energy storage systems at sites with on-site PV generation and EV charging, and 
how do solutions vary with climate, building type, and utility rate structure? 

Figure 1 is a high-level schematic depicting the various behind-the-meter systems, including stationary battery, 
solar PV, electric-vehicle supply equipment (EVSE), and thermal energy storage (TES). 
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Figure 1. Schematic depicting the default combination of technologies for BTMS analysis. 

The BTMS Analysis team is developing a multi-tool simulation platform called EnStore, short for Energy 
Storage. This platform will be able to capture performance characteristics and interactions between disparate 
technologies with high fidelity. In researching existing tools used in this space, the team concluded that no one 
existing tool could complete the multisystem, detailed analysis required for this project—but rather, a 
combination of several existing tools would be necessary. This project will leverage the following tools: 

• REoptTM energy-system optimization tool (Cutler et al., 2017) 
• System Advisor Model (SAM) (Blair et al., 2018) 
• EV-EnSite and Electric Vehicle Infrastructure Projection Tool (EVI-Pro) (Ucer, Wood et al., 2018) 
• EnergyPlusTM building simulation engine (DOE, 2019a) 
• OpenStudio® suite of supporting building simulation applications (DOE, 2019b) 
• Utility Rate Database (URDB) (DOE, 2019c) 
• The DOE Prototype building energy models (DOE, 2019d). 

Financial Metrics Captured in EnStore 
This section discusses the various financial metrics captured in EnStore. Initial focus for the analysis and 
methodology is around a single ownership model, where one entity owns the building, the EV charging station, 
and any BTMS equipment, including the stationary battery, solar PV, and TES. Therefore, all the BTMS costs 
and benefits accrue to a single owner. This may not be representative of the market today, because places such 
as Walmart may have EV stations owned and operated by Electrify America and that are separately metered. 
However, this model still provides a starting point for BTMS system comparisons. We will continue to explore 
other ownership models, try to identify which are the most prevalent, and determine the appropriate financial 
metrics for these disaggregated ownership models in the future. 
 
Three financial metrics will be used to understand the economic impact of BTMS to the system owner 
including: net present cost (NPC), levelized cost of charging (LCOC), and levelized cost of electricity (LCOE).  
 

• NPC is defined as the total present cost of the system to the system owner. Note that net present value 
and the net present cost differ only in sign. 

• LCOC is the minimum required selling price that the owner of the system must charge EV owners in 
order to “break even” after paying for the capital and operating expenses with a specified rate of 
return. At a high level, LCOC is computed by identifying all the system costs beyond the building 
electricity costs, and then determining what EV owners must pay ($/kWh) to achieve a net present 



 

value (NPV) equal to zero. It is important to note that the LCOC is not the market price for EV 
charging, because the market may be willing to pay more or less than this amount; the true market 
value for EV charging is unknown in this analysis. 

• LCOE is analogous to LCOC, but instead, it is computed from the building’s perspective (e.g., all 
marginal systems costs and benefits accrue to the building).  

 
In this analysis, we compare each of the financial metrics of a baseline (with a “seed” building with EV 
charging stations but no BTMS system [battery, PV, TES]) with the financial metrics of the full BTMS system, 
including the building and EV charging station. The baseline scenario provides the benchmark for the system 
owner to use when determining if the BTMS system is economically attractive. In the baseline scenario, it is 
important to note that the EV station and the building being under the same meter is implied and exist before 
any BTMS equipment is installed. 
 
Net Present Cost 
NPC is defined as the sum of all the discounted costs of the entire system over the lifetime of the project. NPC 
can be computed for a baseline system (building and EVSE infrastructure) as well as the BTMS system 
(building, EVSE infrastructure, and the new battery, PV, and TES assets). By computing the NPC for both 
systems, the metric can be used to help answer a key research question:  
 

• Should the system owner install the BTMS equipment or not?  
 
NPC is the most straightforward to calculate of the three financial metrics discussed above because all the 
costs and benefits of the BTMS system are accrued to a single owner.  
 
Understanding that the NPC for the multi-asset BTMS system will have higher upfront capital costs than that 
of the baseline system (with no initial capital costs), the future lower operational costs from saving money on 
the annual electricity bill must at some point allow the system owner to “break even” and cover the initial 
investment costs. If the BTMS system is worth the investment, then the annual electricity bill must be low 
enough such that the NPC of the BTMS system is lower than that of the baseline system. 
 
Mathematically, NPC includes capital costs, fixed and variable operational costs, and the monthly utility bill, 
which is another type of operational cost. Costs that are incurred over time are discounted back to present 
values using a discount rate representing the risk-adjusted, time-value of money. 
 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐹𝐹𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷 𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝑉𝐶𝐶𝑉𝑉𝐷𝐷𝐶𝐶𝑉𝑉𝑉𝑉𝐷𝐷 𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶
+ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑉𝑉𝑙𝑙 𝑈𝑈𝐷𝐷𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝑙𝑙 𝐵𝐵𝐷𝐷𝑉𝑉𝑉𝑉. 

 
CapEx, or capital expenditures, for the BTMS case include all upfront installed costs, including the battery, 
solar PV, thermal energy storage, EVSE, power electronics, interconnection, and BOP. CapEx for the baseline 
system (with building + EV charging station only) include only that of the EVSE, interconnection cost, and 
related power electronics components. 
 
OpEx, or operational expenditures, for the BTMS case could include the energy costs, maintenance labor, and 
maintenance supplies for the battery, solar PV, TES, or EVSE. The annual electricity cost is broken out in the 
formula above for convenience with later calculations.  
 
NPC can be written mathematically as: 
 

𝑁𝑁𝑁𝑁𝑁𝑁 = �𝑁𝑁𝑖𝑖
𝑖𝑖

+ � �
∑ �𝐹𝐹𝑖𝑖,𝑛𝑛 + 𝑉𝑉𝑖𝑖,𝑛𝑛�+ ∑ 𝑀𝑀𝑚𝑚𝑚𝑚𝑖𝑖

(1 + 𝑉𝑉)𝑛𝑛
�

𝑛𝑛
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where 
𝐷𝐷 = 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷  
𝐷𝐷 = 𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 (𝐷𝐷.𝑔𝑔. ,  𝑙𝑙𝐷𝐷𝐶𝐶𝑉𝑉)  
𝑚𝑚 = 𝐷𝐷𝐷𝐷𝑉𝑉𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 (𝐷𝐷.𝑔𝑔. ,  𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷ℎ)  
𝑁𝑁𝑖𝑖 = 𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝑉𝑉 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑜𝑜 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷 
𝐹𝐹𝑖𝑖,𝑛𝑛 = 𝑜𝑜𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑜𝑜 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷 𝐷𝐷𝐷𝐷 𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷 
𝑉𝑉𝑖𝑖,𝑛𝑛 = 𝑣𝑣𝐶𝐶𝑉𝑉𝐷𝐷𝐶𝐶𝑉𝑉𝑉𝑉𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑜𝑜 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷 𝐷𝐷𝐷𝐷 𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷 
𝑀𝑀𝑚𝑚 = 𝐷𝐷𝐷𝐷𝑉𝑉𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 (𝐷𝐷.𝑔𝑔. ,  𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷ℎ) 𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝑙𝑙 𝑉𝑉𝐷𝐷𝑉𝑉𝑉𝑉 𝑜𝑜𝐷𝐷𝑉𝑉 𝐷𝐷𝐷𝐷𝑉𝑉𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚 
𝑉𝑉 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝑉𝐶𝐶𝐷𝐷𝐷𝐷 𝐶𝐶𝐷𝐷𝑉𝑉 𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷. 

 
Levelized Cost of Charging (LCOC) 
LCOC is defined as the minimum required selling price of the electricity sold to the EV owners to pay back all 
costs associated with the project at the specified rate of return. LCOC can be computed for the baseline 
scenario (building and EV charging station only) and the BTMS scenario (building, EV charging station, 
battery, PV, and TES) to help answer the research question:  
 

• If BTMS equipment were installed, what would be the relative impact to the EV owner? 
 
Example output would be similar to the following:  
 

• LCOC𝑉𝑉𝐶𝐶𝐷𝐷𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 = $0.15/𝑘𝑘Wℎ 
• LCOC𝐵𝐵𝐵𝐵𝑀𝑀𝐵𝐵 = $0.10/𝑘𝑘𝑘𝑘ℎ, 

 
which would be able to inform the system owner that the project is both economically attractive (because 
LCOCBTMS is less than LCOCbaseline) and lowers the required EV electricity selling price to break-even by 33%.  
 
To compute LCOC and have it provide information beyond the NPC metric, the relative costs of the EV 
charging station and building must be disaggregated and allocated to each subsystem (building or EV owners). 
For example, in the baseline scenario (building and EV charging station only), the LCOC must be computed to 
represent the effective cost of electricity sold to the EV owners while the building pays its “fair share” of the 
total system utility bill. A combined building and EV charging-station utility bill may not simply be the sum of 
two separate utility bills (due to non-linear demand charges), so the following assumptions are made:  
 

1. The building will pay a utility bill equal to that if the EV charging station did not exist, and  
2. The EV owners will pay for all marginal costs associated with installing and using the EV charging 

stations (marginal demand charges, marginal energy consumption, marginal asset costs [e.g., EVSE, 
controls]).   

 
The assumption that the EV owners pay for all marginal costs is justified because vehicle owners have 1) a 
more inelastic demand for energy prices and 2) a higher willingness-to-pay for electricity than a building 
owener would. With those two assumptions, the LCOC for a baseline system can be calculated by removing 
the building electricity costs associated with only the building and normalizing by the total energy 
consumption of the EVs. Mathematically:  

𝐿𝐿𝑁𝑁𝑂𝑂𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 = �
𝑁𝑁′𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸+𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 − 𝑁𝑁′𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 𝑜𝑜𝑛𝑛𝑙𝑙𝑜𝑜

𝐶𝐶′𝐵𝐵𝐸𝐸𝐸𝐸
� 

where 
𝑁𝑁′𝑖𝑖 = 𝑣𝑣𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉 𝐷𝐷𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐶𝐶𝐷𝐷ℎ 𝑜𝑜𝑉𝑉𝐷𝐷𝑓𝑓𝐷𝐷 (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)𝑜𝑜𝐷𝐷𝑉𝑉 𝐷𝐷𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷  
𝐶𝐶′𝑖𝑖 = 𝑣𝑣𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉 𝐷𝐷𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝑔𝑔𝑙𝑙 𝑜𝑜𝑉𝑉𝐷𝐷𝑓𝑓𝐷𝐷 𝑔𝑔𝐷𝐷𝐷𝐷𝐷𝐷𝑔𝑔 𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷 
𝐵𝐵𝐶𝐶𝑉𝑉 =  𝑉𝑉𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝑙𝑙 𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷 𝑣𝑣𝐷𝐷ℎ𝐷𝐷𝐷𝐷𝑉𝑉𝐷𝐷. 

 



 

Specifically, 𝑁𝑁′𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸+𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 represents the vector of cash flows for the baseline system (building with the EV 
charging station), whereas 𝑁𝑁′𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 𝑜𝑜𝑛𝑛𝑙𝑙𝑜𝑜 denotes the cash flows for the annual electricity bill of the 
building. By removing the building cost from the baseline system, only marginal costs related to the addition 
of the EV charging infrastructure are left, which can be normalized by the battery EV charging to obtain an 
LCOC.  
 
Expanding the above equation into the summation over the periods yields:  
 

𝐿𝐿𝑁𝑁𝑂𝑂𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 =

⎝

⎜
⎛
∑ 𝑁𝑁𝑖𝑖𝑖𝑖 + ∑ �

∑ �𝐹𝐹𝑖𝑖,𝑛𝑛 + 𝑉𝑉𝑖𝑖,𝑛𝑛�+ ∑ 𝑀𝑀𝑚𝑚𝑚𝑚𝑖𝑖
(1 + 𝑉𝑉)𝑛𝑛 �𝑛𝑛 − �𝑁𝑁𝑏𝑏 +∑ �

𝐹𝐹𝑏𝑏,𝑛𝑛 + 𝑉𝑉𝑏𝑏,𝑛𝑛 + ∑ 𝑀𝑀𝑏𝑏,𝑚𝑚𝑚𝑚
(1 + 𝑉𝑉)𝑛𝑛 �𝑛𝑛 �

∑ � 𝐶𝐶𝑛𝑛
(1 + 𝑉𝑉)𝑛𝑛�𝑛𝑛

⎠

⎟
⎞

 

 
or, more succinctly:  
 

𝐿𝐿𝑁𝑁𝑂𝑂𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 =

⎝

⎜
⎛
∑ [𝑁𝑁𝑖𝑖]𝑖𝑖 − 𝑁𝑁𝑏𝑏 + ∑ �

∑ �𝐹𝐹𝑖𝑖,𝑛𝑛 + 𝑉𝑉𝑖𝑖,𝑛𝑛 � − 𝐹𝐹𝑏𝑏,𝑛𝑛 − 𝑉𝑉𝑏𝑏,𝑛𝑛 + ∑ �𝑀𝑀𝑚𝑚 −𝑀𝑀𝑏𝑏,𝑚𝑚�𝑚𝑚𝑖𝑖
(1 + 𝑉𝑉)𝑛𝑛 �𝑛𝑛

∑ � 𝐶𝐶𝑛𝑛
(1 + 𝑉𝑉)𝑛𝑛�𝑛𝑛

⎠

⎟
⎞

 

 
where 

𝐷𝐷 = 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷  
𝐷𝐷 = 𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 (𝐷𝐷.𝑔𝑔. ,  𝑙𝑙𝐷𝐷𝐶𝐶𝑉𝑉)  
𝑉𝑉 = 𝑉𝑉𝐷𝐷𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝑔𝑔 (𝐷𝐷𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝑉𝑉𝐷𝐷𝐶𝐶𝐷𝐷) 
𝑚𝑚 = 𝐷𝐷𝐷𝐷𝑉𝑉𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 (𝐷𝐷.𝑔𝑔. ,  𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷ℎ)  
𝑁𝑁𝑖𝑖 = 𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝑉𝑉 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑜𝑜 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷 
𝐹𝐹𝑖𝑖,𝑛𝑛 = 𝑜𝑜𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑜𝑜 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷 𝐷𝐷𝐷𝐷 𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷 
𝑉𝑉𝑖𝑖,𝑛𝑛 = 𝑣𝑣𝐶𝐶𝑉𝑉𝐷𝐷𝐶𝐶𝑉𝑉𝑉𝑉𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑜𝑜 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷 𝐷𝐷𝐷𝐷 𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷 
𝑀𝑀𝑚𝑚 = 𝐷𝐷𝐷𝐷𝑉𝑉𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 (𝐷𝐷.𝑔𝑔. ,  𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷ℎ) 𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝑙𝑙 𝑉𝑉𝐷𝐷𝑉𝑉𝑉𝑉 𝑜𝑜𝐷𝐷𝑉𝑉 𝐷𝐷𝐷𝐷𝑉𝑉𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚 
𝑉𝑉 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝑉𝐶𝐶𝐷𝐷𝐷𝐷 𝐶𝐶𝐷𝐷𝑉𝑉 𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 
𝐶𝐶𝑛𝑛 = 𝐵𝐵𝐶𝐶𝑉𝑉 𝐷𝐷ℎ𝐶𝐶𝑉𝑉𝑔𝑔𝐷𝐷𝐷𝐷𝑔𝑔 𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝑔𝑔𝑙𝑙 (𝐷𝐷.𝑔𝑔. ,  𝑘𝑘𝑘𝑘ℎ) 𝐷𝐷𝐷𝐷 𝐶𝐶𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷. 

 
As seen in this equation, the removal of the baseline-building-only costs can be any capital, fixed, or variable 
costs associated with the building. However, it is likely that only a monthly utility bill of the baseline building 
will need to be removed to calculate the LCOC metric.  
 
The LCOC of the BTMS system can be computed in an analogous way but replacing the baseline system costs 
with the BTMS system costs. Mathematically, this can be expressed as:  
 

𝐿𝐿𝑁𝑁𝑂𝑂𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸 = �
𝑁𝑁′𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸+𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏+𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸 − 𝑁𝑁′𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 𝑜𝑜𝑛𝑛𝑙𝑙𝑜𝑜

𝐶𝐶′𝐵𝐵𝐸𝐸𝐸𝐸
� 

 
By computing the LCOC metric in this way for both the baseline scenario and the BTMS scenario, the metric 
can be used to inform both the system owner on the economic attractiveness of the project while also providing 
information on the relative impact to the EV owners.  
 
Also, it should be noted that that impact of taxes, carry-forward tax losses, and incentives are not explicitly 
shown in these equations for clarity but will be accounted for in the actual computation within EnStore. 
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Levelized Cost of Electricity (LCOE) 
LCOE is defined as the minimum required selling price of the electricity sold to the building owner to pay 
back all costs associated with the project at the specified rate of return. It answers the research question, “If 
BTMS equipment were installed, what are the financial benefits of the investment to the building owner?” 
 
Mathematically, this is very similar to the LCOC calculation except it assumes that all benefits of the BTMS 
system go to the building owner as opposed to the EV owner. Thus, the calculations for LCOE are similar to 
those of LCOC, but levelization is by energy usage of the building as opposed to energy usage of the EVSE. 
 
All marginal costs of adding the EV station accrue to the EV owners, so the LCOE for the building is trivial 
and is effectively the levelized utility rate for the building:  
 

𝐿𝐿𝑁𝑁𝑂𝑂𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 = �
𝑁𝑁′𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 𝑜𝑜𝑛𝑛𝑙𝑙𝑜𝑜

𝐶𝐶′𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏
� 

where 
𝑁𝑁′𝑖𝑖 = 𝑣𝑣𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉 𝐷𝐷𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐶𝐶𝐷𝐷ℎ 𝑜𝑜𝑉𝑉𝐷𝐷𝑓𝑓𝐷𝐷 (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) 𝑜𝑜𝐷𝐷𝑉𝑉 𝐷𝐷𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷  
𝐶𝐶′𝑖𝑖 = 𝑣𝑣𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉 𝐷𝐷𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝑔𝑔𝑙𝑙 𝑜𝑜𝑉𝑉𝐷𝐷𝑓𝑓𝐷𝐷 𝑔𝑔𝐷𝐷𝐷𝐷𝐷𝐷𝑔𝑔 𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚 𝐷𝐷. 

 
The LCOE of the BTMS system can be computed in an analogous way but replacing the baseline system costs 
with the BTMS system costs. Mathematically, this can be expressed as:  
 

𝐿𝐿𝑁𝑁𝑂𝑂𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸 = �
𝑁𝑁′𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸+𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏+𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸 − �𝑁𝑁′𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸+𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 − 𝑁𝑁′𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 𝑜𝑜𝑛𝑛𝑙𝑙𝑜𝑜�

𝐶𝐶′𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏
� 

 
Thus, by defining the LCOE of the building in this way, it can be used to determine if the BTMS system is 
economically attractive (LCOEBTMS is less than LCOEbaseline) and the relative impact to the building owner 
assuming all benefits are accrued to the building (e.g., by what percentage was LCOE reduced due to the 
BTMS investment).  
 
Using consistent accounting allows us to compute both LCOC and LCOE. These metrics provide additional 
information beyond the NPC metric and help answer additional research questions, such as, “What is the 
relative impact to the individual EV owners or building rate payer?” 
 
Single Owner vs. Multiple Owner Business Models 
Multiple ownership models will be evaluated in detail in FY21 to better understand how asset ownership 
structure impacts the decision about whether or not to invest in this BTMS equipment. This will involve 
developing a better understanding of the common business models seen today or could be used in the future, 
identifying how interactions and agreements between owners will be handled, and determining the relative cost 
impacts within and across owner boundaries.  
 

Where Financial Metrics are Computed in EnStore 
The financial metrics are crucial for the EnStore program because the cost analysis helps determine how 
various details of the BTMS system balance and interact, and they are a main way to determine the economic 
value and attractiveness of the BTMS system. This section describes where financial metrics are computed in 
EnStore, detailing how the program finds the BTMS configuration that leads to the greatest financial savings 
for the system owner. A graphic depicting the various stages of EnStore can be seen in Figure 2. 
 



 

 

Figure 2. Schematic depicting EnStore workflow. 

In the Seed Stage of the EnStore program, REopt will first calculate preliminary optimal sizes for the 
stationary battery system and PV system, finding those that maximize the net present value (NPV) of the 
system. Next, the Exploration Stage of the EnStore program is used to consider higher-fidelity, physics-based 
models of load, generation, and storage systems to increase the accuracy of electrical power and heat-transfer 
calculations. At this stage, EnStore will use OpenStudio, EnergyPlus, and SAM to examine how inclusion of 
more detailed component performance characteristics and system interactions can affect design optimization 
results. For each EnergyPlus simulation in the Exploration Stage, permutations of the solar PV size, TES size, 
and stationary battery size will occur. They will differ from those of REopt. Perhaps there will be 10 
permutations of solar, TES, and stationary battery sizes each, which means there will be 10×10×10, or 1000, 
total simulations occurring for one single REopt run, to determine the optimal configuration of these systems.  
 
For each of the hypothetical 1000 runs mentioned above, the run with the lowest cost computed in financial 
calculations will be that which has the “optimal configuration.” As mentioned previously, the cost metrics 
calculated will either be NPC, LCOC, or LCOE, depending on the scenario of interest. Because the energy 
usage of the EV charging station and the seed building is fixed beforehand, the configuration with the lowest 
NPC will match that with the lowest LCOC and LCOC. Therefore, the run with the minimum associated NPC, 
LCOC, and LCOE for a given utility rate, location, building type, unit costs, and more will be stored, and its 
respective BTMS configuration of sizes will be reported. 
 

Methodology for Computing Financials in EnStore 
We will be leveraging established SAM modules for the financial analysis. Specifically, we will be using the 
PySAM UtilityRate5 and CashLoan modules to compute financial metrics. The UtilityRate5 module computes 
the annual electricity bill using a regionally and temporally resolved utility rate. The utility bill is included in 
cash-flow calculations as an operational expense that is incurred over each year of the project. The CashLoan 
module will be used to compute NPC and LCOC/LCOE, considering the discount rate, state and federal tax 
incentives, investment or production tax credits, and more. Documentation for the UtilityRate5 module can be 
found here; documentation for the CashLoan module can be found here.  
 
The UtilityRate5 module will receive necessary “gen” and “load” input vectors, or generation and load vectors, 
from the EnergyPlus timeseries outputs. The load vector is equivalent to the load of the building + EVSE after 
BTMS has lowered its demand and is the net electricity bought from the grid, or “grid to system.” In 

https://nrel-pysam.readthedocs.io/en/master/modules/Utilityrate5.html
https://nrel-pysam.readthedocs.io/en/master/modules/Cashloan.html
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EnergyPlus, this is denoted as ElectricityPurchased:Facility [J](TimeStep). The gen vector is equivalent to the 
net electricity sold to the grid, or “system to grid.” In EnergyPlus, this is denoted as 
ElectricitySurplusSold:Facility [J] (TimeStep). These net loads and the utility rate information are sufficient to 
compute the annual electricity bill, which is one of the inputs to the CashLoan module. 
 
The CashLoan module takes in all installed costs and annual O&M costs, including the annual electricity bill, 
and uses this alongside information such as the discount rate, federal and state tax rate, and inflation rate to 
compute the LCOC, LCOE, and NPC. 
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BTMS Power Electronics for Behind-the-Meter Storage 

National Renewable Energy Laboratory  
Ahmed Mohamed, Ram Kotecha, Andrew Meintz 

Background 
The power electronics effort for BTMS has been tasked with evaluating methods to reduce the balance-of-plant 
(BOP) cost associated balance-of-plant components for a stationary battery system. The technology target for 
the entire BTMS system ranges from $295/kWh to $235/kWh for a C/1 or C/4 charging-station target. The 
BOP, including the power conversion, is roughly two-thirds of the system cost. From a power perspective, the 
BOP equates to between $0.195/W and $0.540/W between the two station designs (C/4 and C/1). In the FY19 
analysis of current-state stationary energy storage systems considering at least a 1-MW system with a 13.8-kV 
connection, the BOP costs ranged from $0.40 to $1.01/W. An investigation of the various power conversion 
topologies (ac-coupled, dc-coupled, and multiple bus dc-coupled) will be investigated to determine strategies 
for the entire site to optimize the design of the BOP. The task objectives for investigation of the primary power 
conversion optimization are as follows: 

• Explore different configurations for integrating ~ 2-MW dc fast-charging (DCFC) loads, ~ 2-MW 
photovoltaic (PV) generation, and ~2-MW energy storage system (ESS) with the power grid: 

o Conventional common ac bus configuration. 
o New common dc bus configuration. 
o Modular-based multiple dc bus. 

• Estimates efficiency vs. load curve for the power electronic conversion stages for: 
o DC fast chargers (350 kW ports). 
o PV generation. 
o Grid energy storage system. 
o Grid interface (e.g., transformer, and ac/dc converter). 

• Integrate the conversion efficiency data with EnStore platform for system cost analysis. 
 

Results  
The team has defined the possible configuration for a site integrated with ~ 2-MW DCFC loads, ~ 2-MW PV 
generation, and ~2-MW ESS with the power grid. Three different configurations are considered: 

A. Conventional common ac bus configuration: 

 

Figure 1. Conventional common ac bus integration. 

 

 

B. Common dc bus configuration: 
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Figure 2. Common dc bus microgrid integration. 

C. Modular-based multiple dc bus configuration 

 

Figure 3. Modular-based multiple dc bus microgrid integration. 

 

Conventional common ac bus configuration 

• In this quarterly report, NREL’s Power Electronics (PE) team focused on the conventional common ac bus 
configuration (Figure 1) as a base case that represents the current situation with the commercially available 
devices, including PV inverter, DCFC, and ESS converter. In this configuration, all generations and loads 
are coupled to the grid through a common LV (480 V) ac bus. A MV/LV transformer is used to bring the 
voltage down. PV, ESS and DCFC are connected to the ac bus through two conversion stages ac/dc and 
dc/dc. Modular concept is considered to size the 2-MW system level. For evaluating this configuration, 
commercial components available at the Energy Systems Integration Facility (ESIF, at NREL) are 
considered. 
 

• Starting with the PV system, the EnStore platform incorporated the System Advisor Model (SAM) to 
model the PV system performance. SAM includes a database for several commercially available PV 
inverters and uses the Sandia inverter model to predict the PV system performance, as indicated in Fig. 4 
[1‒2].  

 



 

 

Figure 4. Description of efficiency data of PV inverter in the System Advisor Model (SAM). 

• The Sandia PV inverter power model is an empirically based performance model of inverter performance 
that uses parameters from a database of commercially available inverters maintained by the California 
Energy Commission (CEC). It estimates the ac output power as function of dc input power and dc input 
voltage [3]. This model is applicable for PV inverter only, in which the power moves from the dc to ac 
side. The model is not appropriate for EV charging application, in which the power flows from ac to dc. In 
addition, it is not applicable for the bidirectional operation associated with the ESS. Therefore, it is 
necessary to develop a new model that is able to predict the performance of DCFCs and ESSs. 

 

NREL Generic Converter Power Model 

• This model is an empirically based performance-generic model for different converters. It estimates the 
output power and efficiency in terms of input power and dc bus voltage. The model uses parameters from 
the datasheet of commercially available converters as well as actual tests. The model is generic and 
applicable for different converters for different applications, including PV inverter, DCFC, and 
bidirectional converter. The model is described in Figure 5 and stated mathematically in (1)‒(3). 
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Figure 5. Converter power and efficiency model. 
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                                          (1) 

where: 
Pout: output power from the converter, (W) 
Pin: input power to the converter, (W) 
Pout0: maximum output power “rating” for converter at the standard test condition, assumed to be an upper 
limit value, (W) 
Pin0: input power at which Pout0 is achieved at the standard test condition, (W) 
Ps0: standby power at which the conversion process starts at standard test condition, (W) 
no: nonlinearity factor defining the curvature of the relationship between input and output power at the 
standard test condition.  

• The impact of variation of dc bus voltage (whether on the input or the output side) is considered using (2). 
 

𝑁𝑁𝑏𝑏𝑎𝑎1 = 𝑁𝑁𝑏𝑏𝑎𝑎0[1 + 𝑁𝑁1(𝑉𝑉𝑏𝑏𝑎𝑎1 − 𝑉𝑉𝑏𝑏𝑎𝑎𝑜𝑜)]
𝑁𝑁𝑏𝑏1 = 𝑁𝑁𝑏𝑏0[1 + 𝑁𝑁2(𝑉𝑉𝑏𝑏𝑎𝑎1 − 𝑉𝑉𝑏𝑏𝑎𝑎𝑜𝑜)]
𝐷𝐷1 = 𝐷𝐷0[1 + 𝑁𝑁3(𝑉𝑉𝑏𝑏𝑎𝑎1 − 𝑉𝑉𝑏𝑏𝑎𝑎𝑜𝑜)]

                                                    (2) 

C1: empirical coefficient allowing Pin0 to vary linearly with dc-voltage input, default value is zero, (1/V) 
C2: empirical coefficient allowing Ps0 to vary linearly with dc-voltage input, default value is zero, (1/V) 
C3: empirical coefficient allowing n0 to vary linearly with dc-voltage input, default value is zero. 

 
• Nonlinearity factor is an empirical parameter that defines the nonlinearity in the relationship between input 

and output power, as described in (3). For the concave-up and linear models, the maximum efficiency 
occurs at the rated power. For the concave-down model, the maximum efficiency occurs before the rated 
power. Impact of the nonlinearity factor on the power and efficiency curve is indicated in Fig. 6. 
 

𝐷𝐷0 = �
𝐷𝐷0 = 0                                                    Linear
𝐷𝐷0𝑚𝑚𝑖𝑖𝑛𝑛 ≥ 𝐷𝐷0 > 0                   Concave down
0 > 𝐷𝐷0 ≥ 𝐷𝐷0𝑚𝑚𝑏𝑏𝑚𝑚                         Concave up

                                                  (3) 

𝐷𝐷0,𝑚𝑚𝑏𝑏𝑚𝑚 is very close to 1 (~0.9) 
𝐷𝐷0,𝑚𝑚𝑖𝑖𝑛𝑛 varies based on the rated and standby powers. It is very close to -0.1 

 

Figure 6. Impact of nonlinearity factor on the power model. 
 



 

Applying the NREL Generic Model for DCFC 

• The NREL PE team has used the model to predict the performance of DCFCs. A list of DCFC equipment 
available at ESIF is presented in Table 1. It shows a variety of commercial DCFCs with different power 
levels and manufactures. These devices will be tested, and the associated model parameters will be 
extracted. 

 
Table-1: List of commercial DCFCs planned for testing at NREL 

 
• As an example, the NREL PE team leveraged the test data for the ABB-Terra-50 published by Idaho 

National Laboratory (INL) [4]. The measurements are shown in Fig. 6, which shows Pout0 = 45.9 kW, Pin0 
= 49.7 kW, ɳ0= 92.3%, Ps0 = 99 W, and ɳmax= 92.8%. These data are digitalized and used to estimate the 
model parameters associated with the DCFC, as indicated in Figs. 7 and 8. Only the orange part in Fig. 8 is 
considered for estimating the model parameters to avoid the misleading points. 

 

 
Figure 7. Measured input and output power profile with time of ABB-Terra-50 published by INL [4]. 

 

 
Figure 8. Output power and efficiency versus input power of ABB-Terra-50 published by INL [4]. 

Model Pin0 (kW) Pout0 (kW) Vac (V) Ps0 (W) Vdc0 (V) Efficiency 

Maximum Minimum 
ABB-Terra-HPC (1x175) 175 160 480/277 ≤ 80 150-920 95.51 94%@20% load 
ABB-Terra-HP (2x175) 350 320 480/277 ≤ 80 150-920 95.51 94%@20% load 
BTC-HP (2x50) 86.10 80 480 - 50-950 93.518 92% 
BTC-350-HP (8x50) 376.7 350 480 - 50-950 93.518 92% 
Tritium-50-HP 55 50 480/277 - 300-600 93.518 92% 
ABB Terra 50 49.7 45.9 480 99 397 92.8 79.8 



FY 2020 Quarter 3 Report 

P a g e  | 17  

 

 
• These measured data are fitted to the model to estimate the nonlinearity factors that match these 

measurements. A comparison between the model output and the measurements is indicated in Fig. 9, 
which shows very good correlation at a nonlinearity factor of 0.0121. 
 

 

Figure 9. Measured and modeled power and efficiency curve for ABB-Terra-50. 
 

• The parameters provided in the manufacturer datasheet (Table 1), along with assumptions made based on 
the current literature, will be considered to estimate the parameters for the other DCFCs’ model. 

Conclusions 
The team has begun an integrated discussion with the cost analysis team on investigating the various power 
conversion topologies (ac-coupled, dc-coupled, and multiple bus dc-coupled). The team developed a generic 
power model that is applicable for dc/ac conversion (e.g., PV), ac/dc conversion (e.g., DCFC), and 
bidirectional conversion (e.g., ESS). The model is applied for the ABB-Terra-50 DCFC and shows very good 
correlation with the measurements. This model is provided to the cost analysis team, along with a database for 
the commercially available DCFCs at NREL developed with the associated parameters to be integrated with 
the EnStore platform. The estimation approach outlined above will support “datasheet” conversion efforts, 
although the team intends to leverage other activities to refine these models for actual equipment available in 
the ESIF. The task objectives for investigating the primary power conversion are expected to support a broader 
understanding of which scenarios (based on, e.g., energy throughput, onsite equipment) will benefit from these 
new approaches to identify operational benefits.   
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BTMS Testing 

Contributors: INL, Electric Applications Incorporated, SNL, NREL 

Background 
An ongoing task is the assessment of possible electrochemical energy storage chemistries that have the 
capability of meeting the BTMS targets. In the last quarter, we expanded our cell chemistries to include nickel-
zinc and lead acid.  

Lead Acid Testing 
In the last quarter, we added Electric Applications Inc. (EAI) to the team to evaluate potential lead acid 
configurations. Current limitations on the energy density of lead batteries are clearly an issue in mobile 
applications. However, these limitations play a lesser part in stationary storage applications, and improvements 
in material utilization are clearly achievable. Currently, a typical lead battery operates at 35 Wh/kg. This is less 
than 20% of the theoretical energy density for lead of 190 Wh/kg, shown in Figure 1, thus leaving significant 
opportunity for improvement.   

Figure 1. Energy density possibilities for lead acid batteries.  

Other issues, most significantly cycle life in energy storage applications, are currently unknown relative to the 
capability of lead batteries to compete on a total cost of ownership (TCO) basis with lithium technology. To 
quantify the drivers of lead battery grid energy storage TCO, EAI has been charged with testing both 
conventional and emerging lead battery technologies in a simulated EV fast-charge demand-reduction 
application. 

Cycle-Life Test Refinement and Testing 
Idaho National Laboratory (INL) and EAI collaborated with the BTMS team to refine the test cycle presented 
last quarter, simulating the device-level power profile from the battery of a peak-shaving system supporting an 
extreme fast charger.  A test cycle has been developed, shakedown tested on surrogate cells, and will be used 
to evaluate the cycle-life performance of various lead battery technologies at EAI, and other critical-material-
free battery technologies at INL, Sandia National Laboratories (SNL), and NREL. These data are 
complemented by continuing benchmark testing of commercial cell technologies that was started at the onset 
of the BTMS project. The resulting data will be used by the BTMS project team as an input to an overarching 
analysis project focused on optimizing BTMS for several applications. 

Results 

Cycle-Life Test Shakedown and Refinement 
Work among testing labs continued to evaluate the test protocol presented last quarter by applying it to 
surrogate cells, and then to use the results of that shakedown testing to refine the test cycle to simulating cases 
of grid power demand-reduction application for a high-power EV fast charger. Three cycles were preliminarily 
evaluated, each anticipating a different number of vehicles presenting themselves for charging and a different 



 

timing of the vehicle arrivals. Battery sizing was based on how many vehicles would need to be supported for 
peak 10-minute, back-to-back (i.e., one immediately after the other) charges. Components of the preliminary 
cycles were discussed with the BTMS team and reduced to two cycles to be applied across all device types to 
be tested, such that the results can be compared across various technologies. 

Two test cycles have been established for cycle-life testing. Both cycles accommodate 24 vehicles per day 
conducting fast charges at peak station power for 10 minutes each. The two test cycles evaluate the effect of 
the corner cases of arrival times of the vehicles at the charger. One cycle assumes that 12 vehicles arrive one 
immediately after another, such that the device’s usable energy is discharged continuously over a two-hour 
period. There is then a 10-hour period where no vehicles arrive at the charger and the device can be fully 
recharged. This cycle is repeated to cycle the device’s usable energy twice in a 24-hour day. This cycle is 
intended to represent a charger that operates with a morning rush and an evening rush, servicing 24 vehicles 
per day at peak power. 

The other test cycle also services 24 vehicles per day. However, for this test cycle, the 10-minute charges at 
peak power are separated by periods of about 26 minutes, during which no vehicle charging occurs, and the 
device under test is partially recharged. In this cycle, all 24 vehicles to be serviced daily by the fast charger 
arrive one after another with this separation of 36 minutes (10 minutes of vehicle charging plus a 26-minute 
quiet period). After charging the 24 vehicles, the charger finishes its 24-hour day with a 10-hour period where 
no vehicles arrive at the charger. This cycle is intended to represent a charger that operates consistently and 
evenly throughout the daytime hours. 

Figure 2. Charge-discharge protocol for BTMS.  



FY 2020 Quarter 3 Report 

P a g e  | 21  

 

The purpose of a demand-reduction energy storage system is to reduce the power demand on the electric grid 
from operation of the EV fast charger. With no demand reduction, the electric grid must supply the full peak 
vehicle charge power. If this vehicle charging power can be optimally buffered, the theoretical minimum 
electric grid power required to service 24 vehicles in a 24-hour period would be less than 20% of the peak fast-
charger input power, supplied continuously, spread over the 24-hour day. Using battery energy storage to 
buffer vehicle-charging power, resulting from the two BTMS test cycles described above, results in operation 
of the energy storage battery as shown in Figure 3. The operating state of charge (SOC) in this figure 
represents the percent of the operating range of the battery—for example, from 100% battery SOC to 30% 
battery SOC, where 30% battery SOC is the minimum recommended battery discharge level and corresponds 
to 0% operating SOC. The blue line depicts the battery operation (as defined by the operating SOC) for the 
morning and afternoon rush test cycle. The red line depicts battery operation for the even distribution of 
vehicle charging during the daytime hours. 

Figure 3. Differences in operating range of the battery in the two BTMS testing protocols. 

The procedure to determine device-level power targets to support the two cycles was executed on a set of 
commercial NMC/Graphite cells. The cells were then cycled using both cycle profiles, although to acquire 
results faster, a 2-hour discharge period was combined with a 3-hour recharge period, resulting in 3 cycles of 
the cells’ usable energy every 25 hours. The discharge power was identical for the cells operating under both 
profiles, and the charging routine was also identical between the two cells, where a CP-CV charging strategy 
was used.  After 100 cycles of the cells’ usable energy, a continuous constant power discharge test was 
performed—from the operating maximum voltage down to the minimum cutoff voltage for the cells.   

The resulting difference in energy fade among the two cells shows that the two cycle profiles can result in 
different aging of the cells.  The shakedown testing continues, although these preliminary results show it is 
important to use both profiles: despite cycling the same gross energy throughput per day, and exercising the 
same capacity window of the cell, the resulting degradation is very different in magnitude, and perhaps in 
mechanism, although that will be evaluated using forthcoming data from continued testing. 
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Ongoing Testing 
INL 
Testing continues for NMC/LTO cells cycled at various rates. These cells have exhibited rather low amounts 
of capacity loss over several thousand cycles at various rates and temperatures. The cells cycled quickly—at 
6C discharge and 1C charge—have lost a similar amount of capacity to the cells cycled at 1C discharge and  
0.5C charge, at reference performance test 10. Thus, the more slowly cycled cells have exhibited much faster 
capacity loss, per cycle, than the cells cycled at high rate. Diagnostic analysis is planned to examine the root 
cause of the relatively accelerated fade in the gently cycled cells. 

Figure 4. Cycling data for LTO-NMC cells under different charge/discharge conditions.  

Upcoming Testing 
Electric Applications Incorporated 
Based on the test cycles discussed, EAI has selected the following lead battery types to be tested: 

Conventional Lead Battery 

• High-carbon AGM 
• Flat-plate gel 
• Thin-plate pure lead 

 
Advanced Lead Battery 

• Quasi bipolar (Dunlop Pulsar architecture) 
• Bipolar (stacked-plate architecture) 

 
The conventional lead batteries were selected to represent current technology used in reserve power and 
photovoltaic applications. The advanced lead batteries were chosen to represent technology that has the 
potential to provide better performance in grid energy storage applications. These batteries incorporate a 
bipolar architecture rather than the monopolar architecture used by the conventional lead batteries. 

The basic monopolar architecture, as shown in Figure 4, evolved over the past century to meet specific 
applications for automotive starting and traction power batteries. The performance of this architecture is 
limited by the following key factors: 

• About 40% of the lead incorporated into the battery is not electrochemically active 
• Current distribution in the cell is uneven 
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• Electrolyte tends to stratify 

Figure 4. Monopolar architecture for a lead acid battery (left) and a bipolar architecture design (right). 

 
The bipolar architecture is an attempt to eliminate inactive lead and provide uniform current pathways to 
maintain even current distribution and electrolyte concentration. It uses a single plate serving as both a positive 
and negative electrode. The plate is impermeable to the sulfuric acid electrolyte, but conductive to electric 
current. This allows one side to be prepared as a positive electrode and the other side of the plate to be 
prepared as a negative electrode. A multi-cell battery is then assembled by stacking the plates with a separator 
and electrolyte between them. Current collectors are then place at the most positive and the most negative ends 
of the battery to collect the current uniformly flowing through the multiple cells of the battery. 

One model of each conventional battery type and each advanced battery type will receive characterization 
testing. This characterization testing will allow the charge and discharge currents for each test cycle to be 
selected to optimize battery cycle-life. Based on the characterization testing, duplicates of two models of 
conventional lead batteries and duplicates of one model of advanced lead batteries will be placed in cycle-life 
testing using each of the two test cycles. Cycle-life testing is expected to continue throughout the next 
reporting period. 

INL 
INL has begun lab work to prepare for screening of more than 50 LMO/LTO cells to ensure that the devices 
tested will be initially well matched. Screening will consist of static capacity tests, rate capability tests, and 
quasi-OCV tests. Nickel/zinc cells were received and will be tested against the two protocols discussed above. 

Summary 
Aging continues for a few commercial cells that began early in the program as a benchmark, not meeting the 
critical-materials-free goal. New critical-materials-free commercial cells will begin testing and evaluation in 
July using the recently developed BTMS device-level cycling routines. 

  



 

BTMS Materials Development 

Yeyoung Ha, Yicheng Zhang, Sang-Don Han, Kyusung Park (NREL), Steve Trask, Shabbir Ahmed, 
Andrew Jansen (ANL)  

Background 
We developed the Behind-the-Meter Storage (BTMS) Gen1 electrolyte for Li4Ti5O12 (LTO) anode and Mn-
based cathode (LiMn2O4 (LMO) or LiNi0.5Mn1.5O4 (LMNO)) systems, which consists of lithium 
hexafluorophosphate (LiPF6) or lithium tetrafluoroborate (LiBF4) in cyclic carbonate solvents (propylene 
carbonate (PC) or ethylene carbonate (EC)). In this quarter, the Gen1 electrolyte system was further studied by 
testing PC and EC co-solvent systems with varying EC/PC ratios. Previously, it has been shown that the ionic 
conductivity of electrolytes increases when EC is added to PC.1 In addition, different salt concentrations in PC 
and EC systems were tested based on the LTO anode patents from Toshiba, where 2 M and 1 M salt 
concentration was used for EC- and PC-based electrolytes, respectively.2-4   

Results 
LTO and LMO electrodes tested in this report were provided by the CAMP facility at Argonne National 
Laboratory (ANL), and detailed information of the electrodes is listed in Table 1. LTO/LMO full cells were 
assembled in 2032-type coin-cell configuration using different electrolyte systems. All cells were tested at 
45°C following 6 h rest at the open-circuit voltage (OCV) → 2 formation cycles at C/10 → 1000 aging cycles 
at 1C. Lower and upper cutoff voltages used were 1.5 and 3.0 V, respectively.   

Table-1: Electrodes Examined in this Report 
 Specifics 

Li4Ti5O12 
(LTO) 

- 87 wt% Samsung Li4Ti5O12 + 5 wt% Timcal C45 + 8 wt% Kureha 9300 PVDF 
- Single-side coating on 20-μm Al foil 
- Coating thickness 102 μm; Porosity 55.6%; Loading 14.20 mg/cm2; Density 1.38 g/cm3 

LiMn2O4 
(LMO) 

- 90 wt% Toda LiMn2O4 + 5 wt% Timcal C45 + 5 wt% Solvay 5130 PVDF 
- Single-side coating on 20-μm Al foil 
- Coating thickness 76 μm; Porosity 33.5%; Loading 18.86 mg/cm2; Density 2.48 g/cm3 

 

Figure 1 shows the performance of LTO/LMO cells cycled in a series of EC/PC solvent mixtures (EC:PC = 
0:1, 1:3, 1:1, 3:1, and 1:0 by weight) with 1 M LiPF6 salt. Among the electrolytes tested, the 100% EC 
electrolyte exhibited the best performance (i.e., highest capacity retention and Coulombic efficiency). In terms 
of capacity retention, EC and PC mixtures showed faster capacity fade compared to the 100% EC or PC 
systems. However, having a higher ratio of EC in the solvent resulted in a better reaction kinetics, which is 
manifested in the dQ/dV plot as decreased overpotential of the EC/PC blend systems compared to that of the 
100% PC electrolyte (Figure 1d). We note that although the difference in the overpotentials is relatively small 
within the cells tested here, the effect may become significant as we move toward thicker electrodes. The 
enhanced performance with higher EC ratio in the solvent may be attributed to the electrolyte properties (e.g., 
higher ionic conductivity with higher EC content1) and/or the electrode/electrolyte interface properties (e.g., 
formation of a less resistive interfacial layer in the electrolytes with different EC/PC ratios). The effect of EC 
and PC on the performance of the cell, especially on each electrode, will be further examined to determine the 
failure mechanisms in the Gen1 electrolyte.  
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The results of LTO/LMO cells tested with different LiPF6 concentrations are shown in Figure 2. Previously, 
for the initial electrolyte development step, we fixed the salt concentration to 1 M. However, in the patents 
from Toshiba on the LTO electrode, 2 M LiBF4 in EC-based solvents was used as the baseline electrolyte.2-3  
Thus, we tested 2 M LiPF6 in EC and PC solvents. Comparing the cycle performance, 1 M LiPF6 in EC and 2 
M LiPF6 in EC electrolytes showed similar results. However, when using PC as the solvent, having a higher 
LiPF6 concentration deteriorated the performance. Such opposite behavior in EC and PC solvents may be 
correlated with a higher dielectric constant of EC compared to that of PC5 and different solvation chemistry in 
the two systems. We also note that in a Toshiba patent using PC-based solvents, 1 M salt concentration was 
used.4 The dQ/dV plots of the 1st (C/10) and the 300th (1C) cycles show that the salt concentration does not 
affect the reaction kinetics at a lower C-rate, but it does impact the performance at a higher C-rate, especially 
with the PC solvent. At 1C (Figure 2d), the overpotential increases in the 2 M LiPF6 electrolytes compared to 
that in the 1 M LiPF6 electrolytes for both EC and PC solvents, but with a much greater extent in the PC 
solvent.   

Figure 3. Cycle performance of LTO/LMO cells with 1 M LiPF6 salt in a series of EC:PC solvent mixtures. Cells were cycled at 
C/10 for 2 formation cycles and at 1C for aging cycles between 1.5 and 3.0 V. (a) Discharge capacity, (b) capacity 

retention, and (c) Coulombic efficiency as a function of cycle number. (c) dQ/dV plot of each solvent mixture systems at the 
1000th cycle. 



 

 

Figure 4. Cycle performance of LTO/LMO cells in electrolytes consisting of 1 M or 2 M LiPF6 salt in EC or PC solvent. Cells 
were cycled at C/10 for 2 formation cycles and at 1C for aging cycles between 1.5 and 3.0 V. Discharge capacity and 

Coulombic efficiency are plotted as a function of cycle number in (a) and (c), respectively. dQ/dV plots of each electrolyte 
systems at the 1st and the 300th cycles are shown in (b) and (d), respectively. 

Figure 3. Capacity utilization (delithiation) as a function of electrode thickness under various delithiation rates for LTO 
versus lithium metal in coin cells (Gen2 electrolyte, 30oC, 1.0 to 2.0 V). 
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The CAMP Facility at ANL coated LTO, LFP, and LMO single-sided electrodes to test the effect of thickness 
(capacity/mass loading) on active material utilization. All coatings used aluminum foil as the current collector 
and PVDF as the binder. These electrodes were calendered (~53% for LTO, ~41% for LFP, and ~34% for 
LMO), where the porosity was limited due to electrode curling, which is a common problem for single-sided 
electrodes. The LTO and LFP electrodes were tested in coin cells versus lithium metal, with Gen2 electrolyte 
(1.2 M LiPF6 in EC:EMC (3:7 by wt.)) at current rates of C/24, C/10, C/5, C/2, 1C, and 2C (LTO lithiation and 
LFP delithiation sub-cycles were limited to C/5). The LMO electrodes will be tested in the next quarter.   

Figures 3 and 4 are a graphical summary of the capacity utilization as a function of electrode thickness for 
LTO and LFP, respectively. Two coin cells were tested for each thickness shown, and the resulting capacities 
were averaged for each current rate. It can be surmised from a study of both figures that the capacity of LTO 
and LFP were well utilized at all thicknesses up to a current rate of C/2. However, the capacity of LTO and 
LPF were not fully utilized at the 1C current rate for the thicker electrodes. In particular, the LTO electrodes 
above 150 microns were limited in performance. But keep in mind that the LTO electrodes had high porosity 
(~53%) because they were single-sided: a double-sided electrode would have lower porosity, implying the 
final electrode thickness may be limited to ~130 microns. The LFP electrode thickness also appears to be 
limited to near 130 microns. Note that these thickness limitations at high “discharge” rates may be due to 
lithium plating and stripping limitations at the lithium counter electrode. Full cells of LTO versus LMO with 
select capacity-matched thicknesses will be tested for rate capability in the next quarter.  

 

 

 

 

Figure 4. Capacity utilization (lithiation) as a function of electrode thickness under various lithiation rates for LFP versus lithium 
metal in coin cells (Gen2 electrolyte, 30oC, 2.9 to 3.8 V). 



 

Conclusions  
LTO/LMO cells were tested in LiPF6-based electrolytes using EC and PC solvents. With varying EC/PC 
ratios, having a higher EC content enhanced the performance. In addition, the salt concentration (1 M vs. 2 M) 
did not have a critical impact on the performance when EC was used as the solvent, but a worse performance 
was observed at a higher salt concentration with PC. To determine the failure mechanisms in the BTMS Gen1 
electrolyte, we will perform detailed electrochemical analysis using symmetric cells, which will allow us to 
deconvolute the different chemistries at the anode and the cathode. In addition, we will continue to explore 
new electrolyte systems, especially for high-voltage cathodes. Finally, thicker electrodes will be tested to 
determine the thickness limitations considering the specific power and specific energy at different 
temperatures.   

In the CAMP part, we made significant progress despite the reduced lab time in this quarter due to the 
COVID-19 pandemic. Single-sided electrodes of LTO and LFP that were made and put on test at the end of the 
2nd quarter finished cycling in the 3rd quarter, and the data were analyzed. These results are now being used in 
the BatPaC techno-economic model, which will be discussed in the next quarter. LMO electrodes were 
fabricated at the end of this quarter and will be put on test in the 4th quarter. 
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