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Abstract 
AeroDyn is a set of routines used in conjunction with an aeroelastic simulation code to predict 
the aerodynamics of horizontal axis wind turbines. These subroutines provide several different 
models whose theoretical bases are described in this manual. AeroDyn contains two models for 
calculating the effect of wind turbine wakes: the blade element momentum theory and the 
generalized dynamic-wake theory. Blade element momentum theory is the classical standard 
used by many wind turbine designers and generalized dynamic wake theory is a more recent 
model useful for modeling skewed and unsteady wake dynamics. When using the blade element 
momentum theory, various corrections are available for the user, such as incorporating the 
aerodynamic effects of tip losses, hub losses, and skewed wakes. With the generalized dynamic 
wake, all of these effects are automatically included. Both of these methods are used to calculate 
the axial induced velocities from the wake in the rotor plane. The user also has the option of 
calculating the rotational induced velocity. In addition, AeroDyn contains an important model for 
dynamic stall based on the semi-empirical Beddoes-Leishman model. This model is particularly 
important for yawed wind turbines. Another aerodynamic model in AeroDyn is a tower shadow 
model based on potential flow around a cylinder and an expanding wake. Finally, AeroDyn has 
the ability to read several different formats of wind input, including single-point hub-height wind 
files or multiple-point turbulent winds. 
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Nomenclature 

Blade Element Momentum Model 
a = axial induction factor 

skewa  = axial induction factor with skewed wake 
a' = rotational or tangential induction factor 
B = number of blades 
c = chord length 
Cl = lift coefficient 
Cd = drag coefficient 
CT = thrust coefficient 
dr = blade element and annulus width 
dQ = torque of element or annulus  
dT = thrust of element or annulus 
D = drag force 
F = combined tip-loss and hub-loss coefficient 
L = lift force 
r = local radius 
Q = torque 
R = rotor radius 
Rhub = hub radius 
T = thrust 

∞U  = mean wind speed 
ve-ip = in-plane element velocity due to blade motion
ve-op  = out-of-plane element velocity due to blade motion
VTotal = total velocity seen by blade element 
α = local angle of attack 
β = local element pitch angle 
γ = yaw inflow angle 
ϕ = local flow angle 

λr = local tip speed ratio = 
∞

Ω
U

r  

σ' = local solidity = 
r

Bc
π2

 

ρ = air density 
χ = rotor wake angle 
ψ = azimuth angle 
Ω = rotor rotational speed 

Generalized Dynamic Wake Model 
A = rotor area =  2Rπ
Ae = effective rotor area = ( )22

HRR −π  
B = number of rotor blades  

m
nC  = arbitrary constant for generalized dynamic wake model 
m
nD   = arbitrary constant for generalized dynamic wake model 
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i = imaginary number 1−=  
i = integer index 
j, n = polynomial number (integers) 

q
iL  = aerodynamic force normal to the rotor plane acting on blade element i of blade q 

[L] = inflow gain matrix 
]~[L  = portion of inflow gain matrix dependent on the wake skew angle  

m, r = harmonics number (integers) 
[M] = apparent mass matrix 
NE = number of blade elements in a blade 
p = pressure 

m
nP  = associated Legendre function of the first kind 
m

nP̂  = normalized associated Legendre function of the first kind 

  ( ) ( ) m
n

m
n

mm
n PP ρν−=ν /)1(ˆ

m
nQ  = associated Legendre function of the second kind 
m
nQ̂  = normalized associated Legendre function of the second kind 

  ( ) ( ) ( )0/ˆ iQiQiQ m
n

m
n

m
n η=η

R  = rotor outer radius 
r = harmonics number (integers), if used in conjunction with a summation symbol ( Σ ) 
r = radius 

ir  = radius of the ith element  
r̂  = dimensionless radius  

iR  = outer radius of annular section i 

HR  = rotor hinge radius 
t  = time 
t̂  = dimensionless time = Ω t ( = ψ, if  0

00 =ψ=ψ
=t

 ) 

iu  = induced velocity in ith direction 

iû  = dimensionless induced velocity in ith direction 

V = incoming flow velocity nondimensionalized by ΩR, 
( )

22

2

λµ
λλλµ

+
++

= m  

]ˆ[V  = flow parameter matrix 

VT = total flow velocity at rotor plane nondimensionalized by Ω R, 22 λµ +=  

U∞ = free stream wind speed = ∞U  

xi = displacement in ith direction 
X = function of wake skew angle, χ. 2tan χ=X  
αd = inflow angle, the angle between the inflow and the rotor plane 
α = wake skew angle, the angle between the mean wake path and the rotor plane 

r
jα  = induced-velocity expansion coefficient for the cosine part 
r
jβ  = induced-velocity expansion coefficient for the sine part 

χ = total wake skew angle. The angle between the mean wake path and the rotor axis. The 
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wake is normal to the rotor if 0=χ , and in-plane if 2πχ = . 
 απχ −= 2  and 0 2χ π≤ ≤ . 
Φ  = nondimensional pressure = VA Φ+Φ  

AΦ  = nondimensional pressure due to unsteadiness 
VΦ  = nondimensional pressure due to convection 

( )rr
jφ  = radial expansion shape function, ( ) ( )ν

ν
φ r

j
r
j Pr 1

= ; 21 r−=ν  

λ = total inflow velocity, nondimensionalized by blade tip speed (ΩR), mf λλλ +=  

fλ  = total inflow due to free-stream wind, nondimensionalized by blade tip speed 
 sin dV α=  

mλ  = momentum-theory induced velocity nondimensionalized by blade tip speed 
µ  = advance ratio, in-plane incoming velocity nondimensionalized by blade tip speed 
 cos dV α=  
ν , η , ψ  = ellipsoidal coordinates defined as follows: 

ψην cos11 22 +−=x  

ψην sin11 22 +−=y  
νη=z   

ρ = air density 
m
nρ  = integral of the associated Legendre function of the first kind from 0 to 1, 

 ( )[ ] ννρ dPm
n

m
n ∫=

1 

0 

2  
mC
nτ  = cosine part of pressure coefficient 
mS
nτ  = sine part of pressure coefficient 

Superscripts 
( )*  = first derivative with respect to the nondimensional time, t .  ˆ ( ) tdd ˆ* =  

( )
^

 = nondimensional quantity 
( )C  = index for cosine terms 
( )S  = index for sine terms 

Dynamic Stall Model 
CC = chordwise force coefficient 
CD = drag coefficient 
CD0 = minimum drag coefficient 
CL = lift coefficient 
CN = normal-force coefficient 
C'N = normal-force coefficient with first order lag and attached flow 
CN1 = normal-force coefficient at stall 

C
NC∆  = increment in normal-force coefficient, circulatory component 
I
NC∆  = increment in normal-force coefficient, non-circulatory component 
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αNC  = normal-force coefficient curve slope 
f  = separation-point distance from leading edge normalized by chord length 
M = Mach number 
α = angle of attack 
α0 = zero-lift angle of attack 
∆α = step change in angle of attack 
τv = vortex-travel dimensionless time constant 

C
αφ  = circulatory indicial function 
I

αφ  = non-circulatory indicial function 

Tower Wake Model 
Cd = tower-drag coefficient (based on diameter) 
d = dimensionless radial distance from tower center 
u = dimensionless horizontal wind component (x-direction) 
uwake  = dimensionless wake-velocity deficit 
v = dimensionless horizontal wind component (y-direction) 
x = dimensionless wind-field coordinate, downwind 
y = dimensionless wind-field coordinate, left when looking downwind 

localU  = total velocity in x-direction 

localV  = total velocity in y-direction 

∞U  = total wind speed (mean and any turbulent fluctuation) 

Wind Input  
x, y, z = coordinates measured from the hub location (x is usually south and z is vertical up) 
Hshr = linear-shear coefficients in the horizontal direction 
Vgust  = gust velocity  
Vhub  = hub wind speed  
Vshr  = vertical-shear power-law exponent 
Vshrlin  = linear-shear coefficients in the vertical direction 
δ = wind direction angle from x-axis 
γ = rotor-plane yaw angle relative to x-axis 
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Introduction 
AeroDyn is a series of routines written to perform the aerodynamic calculations for aeroelastic 
simulations of horizontal axis wind turbine configurations. Craig Hansen and researchers at the 
University of Utah and Windward Engineering originally developed these routines for wind 
turbine simulation work, and the complexity of the algorithms has gradually increased with time. 
Recently, researchers at the National Renewable Energy Laboratory (NREL) have further 
developed these routines and changes are ongoing. This report provides users of these routines 
with the aerodynamic theories behind the various algorithms in AeroDyn. It also provides some 
insight into the limits of each aerodynamic model, which may provide ideas for further 
improvement. This report is not intended to be a user's guide for the routines, however. That kind 
of guide (Laino and Hansen 2002) is available for downloading at the NREL design codes Web 
site (http://wind.nrel.gov/designcodes/). 

Currently, the routines of AeroDyn interface with several aeroelastic simulation codes: YawDyn, 
FAST, SymDyn, and ADAMS. The differences between these codes lie mainly in the structural 
dynamics, and since each of them uses AeroDyn, the aerodynamic calculations between them are 
identical. Further explanation and user’s guides for each of these codes are also on the NREL 
design codes Web site. 

When called from the aeroelastic simulation routines, AeroDyn calculates the aerodynamic lift, 
drag, and pitching moment of airfoil sections along the wind turbine blades. It does this by first 
breaking each blade into a number of segments along the span, as specified by an AeroDyn input 
file. AeroDyn concurrently gathers information about the turbine geometry, operating condition, 
blade-element velocity and location, and wind inflow from input files and the aeroelastic 
simulation program. It then uses this information to calculate the various forces for each 
segment, which are used by the aeroelastic simulation program to calculate the distributed forces 
on the turbine blades. The aerodynamic forces affect the turbine deflections and vice versa, 
making the interaction fully aeroelastic. AeroDyn models use relations based on two-
dimensional localized flow, and the characteristics of the airfoils along the blade are represented 
typically by lift, drag, and pitching moment coefficients measured in wind tunnel tests. The wind 
input can consist of a wide variety of atmospheric conditions: three-dimensional and time-
varying atmospheric turbulence as well as discrete gusts or steady mean wind speeds. Often, 
these wind inputs are produced by another NREL simulation code, TurbSim (Jonkman and Buhl 
2004). These winds and the AeroDyn calculations are all limited to time domain calculations. 
Typically, AeroDyn is called by the aeroelastic simulator at each time step to calculate the 
changing aerodynamic forces. 

Several different aerodynamic models are used in AeroDyn and the user of the routines has the 
option of selecting which of these are most applicable to their simulation needs. The most 
important of these aerodynamic models are the wake models. AeroDyn contains two wake 
models: the blade element momentum theory and the generalized dynamic wake theory, both of 
which are explained in detail below. The user also has the option of turning off the wake 
completely, which is useful for modeling parked turbines or debugging input files. If the user 
chooses blade element momentum theory, there are also options to incorporate the aerodynamic 
effects of tip losses, hub losses, and skewed wake. With the generalized dynamic wake, all of 
these effects are automatically included. Both of these methods are used to calculate the axial 
induced velocities from the wake in the rotor plane. The user also has the option of calculating 
the rotational (or tangential) induced velocity, which affects the rotor torque. AeroDyn also 
contains another important model for dynamic stall based on the semi-empirical Beddoes-

 

1



Leishman model. This model is particularly important for 
skewed wind turbines and is explained in more detail below. 
The final aerodynamic model in AeroDyn is a tower shadow 
model based on potential flow around a circular cylinder, and 
it is also explained below. 

Wake Modeling 
The user has two different options for calculating the effect 
of the wake on the turbine rotor aerodynamics: either the 
classic blade element momentum theory or the more recently 
developed generalized dynamic wake model. Each model is 
explained in more detail in the following sections. 

Blade Element Momentum 

Blade element momentum (BEM) theory is one of the oldest 
and most commonly used methods for calculating induced 
velocities on wind turbine blades. This theory is an extension 
of actuator disk theory, first proposed by the pioneering propeller work of Rankine and Froude in 
the late 19th century. The BEM theory, generally attributed to Betz and Glauert (1935), actually 
originates from two different theories: blade element theory and momentum theory (see 
Leishman 2000). Blade element theory assumes that blades can be divided into small elements 
that act independently of surrounding elements and operate aerodynamically as two-dimensional 
airfoils whose aerodynamic forces can be calculated based on the local flow conditions. These 
elemental forces are summed along the span of the blade to calculate the total forces and 
moments exerted on the turbine. The other half of BEM, the momentum theory, assumes that the 
loss of pressure or momentum in the rotor plane is caused by the work done by the airflow 
passing through the rotor plane on the blade elements. Using the momentum theory, one can 
calculate the induced velocities from the momentum lost in the flow in the axial and tangential 
directions. These induced velocities affect the inflow in the rotor plane and therefore also affect 
the forces calculated by blade element theory. This coupling of two theories ties together blade 
element momentum theory and sets up an iterative process to determine the aerodynamic forces 
and also the induced velocities near the rotor. 

 
Figure 1. Annular plane used in 
blade element momentum theory 

In practice, BEM theory is implemented by breaking the blades of a wind turbine into many 
elements along the span. As these elements rotate in the rotor plane, they trace out annular 
regions, shown in Figure 1, across which the momentum balance takes place. These annular 
regions are also where the induced velocities from the wake change the local flow velocity at the 
rotor plane. BEM can also be used to analyze stream tubes through the rotor disk, which can be 
smaller than the annular regions and provide more computational fidelity. However, as currently 
written, AeroDyn only allows analysis using annular regions. 

Because of its simplicity, BEM theory does have its limitations. One primary assumption is that 
the calculations are static; it is assumed that the airflow field around the airfoil is always in 
equilibrium and that the passing flow accelerates instantaneously to adjust to the changes in the 
vorticity in the wake. In practice, it has been shown that the airfoil response takes time to adjust 
to a changing wake resulting from new inflow or turbine operating conditions (Snel and Schepers 
1995). In order to model this time lag effect correctly, we recommended that the user utilize the 
generalized dynamic wake model described below. One other limitation is that BEM theory 
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breaks down when the blades experience 
large deflections out of the rotor plane. 
Because the theory assumes that momentum 
is balanced in a plane parallel to the rotor, 
any deflections of the rotor will lead to 
errors in the aerodynamic modeling. 
Another limitation of BEM theory comes 
from blade element theory. This theory is 
based on the assumption that the forces 
acting on the blade element are essentially 
two-dimensional, meaning that spanwise 
flow is neglected. This assumption also 
implies that there is very little spanwise 
pressure variation (which would create 
spanwise flow), and the theory is therefore 
less accurate for heavily loaded rotors with large pressure 
gradients across the span. Some other limitations of the 
original theory include no modeling of tip or hub vortex 
influence on the induced velocities and an inability to 
account for skewed inflow. However, corrections to the 
original theory have provided some methods to model 
these aerodynamic effects and will be explained in more 
detail below. In spite of the limitations listed above, BEM 
theory has been used widely as a reliable model for 
calculating the induced velocity and elemental forces on 
wind turbine blades, and it has been retained as a useful model in AeroDyn. 

 
Figure 2. Local element velocities and flow angles 

 
Figure 3. Local elemental forces 

The advantage of the BEM theory is that each blade element is modeled as a two-dimensional 
airfoil. Figure 2 is an example of an airfoil with the velocities and angles that determine the 
forces on the element and also the induced velocities from the wake influence. Figure 3 shows 
the resultant aerodynamic forces on the element and their components perpendicular and parallel 
to the rotor plane. These are the forces that dictate the thrust (perpendicular) and torque (parallel) 
of the rotor, which are the dominant forces for turbine design. In Figure 3, the angle relating the 
lift and drag of the airfoil element to the thrust and torque forces is the local inflow angle, 
ϕ (or φ in the figures). As shown in Figure 2, this inflow angle is the sum of the local pitch angle 
of the blade, β, and the angle of attack, α. The local pitch angle is dependent on the static blade 
geometry, elastic deflections, and the active or passive blade pitch control system. The angle of 
attack is a function of the local velocity vector, which is in turn constrained by the incoming 
local wind speed, rotor speed, blade element velocities and induced velocities. Note in Figure 2 
that the velocities of the element from blade deflections (ve-op and ve-ip) affect the inflow angle 
and angle of attack, but are not directly affected by the induced velocities from the wake. This 
assumption is consistent with momentum theory, but it might not be the appropriate physical 
model for the element-wake coupling. 

Because we are required to obtain the angle of attack to determine the aerodynamic forces on an 
element, we must first determine the inflow angle based on the two components of the local 
velocity vector. Assuming that the blade motion is very small, the resulting equation is 
dependent on the induced velocities in both the axial and tangential directions as well as the local 
tip speed ratio: 
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ra
a

ar
aU

λ
ϕ

)'1(
1

)'1(
)1(tan

+
−=

+Ω
−= ∞ . [1] 

However, if the blade motion is significant we must include the local velocities in the calculation 
of the inflow angle, as follows: 

ipe

ope

var
vaU

−

−∞

++Ω

+−
=

)'1(
)1(

tanϕ . [2] 

This equation holds for all elements of the blade along the span, although typically the inflow 
angle changes with element location.  

The induced velocity components in Equations 1 and 2 are a function of the forces on the blades 
and we use BEM theory to calculate them. A thorough derivation of these equations can be 
found in most wind turbine design handbooks (Manwell et al. 2002; Burton et al. 2001), and so it 
will only be summarized here. From blade element theory and Figure 3, the thrust distributed 
around an annulus of width dr (see Figure 1) is equivalent to 

cdrCCVBdT dltotal )sincos(
2
1 2 ϕϕρ += , [3] 

and the torque produced by the blade elements in the annulus is equivalent to 

crdrCCVBdQ dltotal )cossin(
2
1 2 ϕϕρ −= . [4] 

Now, to relate the induced velocities in the rotor plane to the elemental forces of Equations 3 and 
4 we must incorporate the momentum part of the theory, which states that the thrust extracted by 
each rotor annulus is equivalent to 

adraUrdT )1(4 2 −= ∞ρπ , [5] 

and the torque extracted from each annular section is equivalent to 
draaUrdQ ′−Ω= ∞ )1(4 3ρπ . [6] 

Thus, when we include two-dimensional airfoil tables of lift and drag coefficient as a function of 
the angle of attack, α, we have a set of 
equations that can be iteratively solved for the 
induced velocities and the forces on each 
blade element. However, before we solve our 
system of equations, we would like to take 
into account several corrections to the BEM 
theory. These corrections include tip- and 
hub-loss models to account for vortices shed 
at these locations, the Glauert correction to 
account for large induced velocities (a >0.4), 
and the skewed wake correction to model the 
effects of incoming flow that is not 
perpendicular to the rotor plane. Each of these 
will be described in a section below.  

Note that Equations 1-6 do not include terms 
for coning angle or teeter angle of the rotor 
plane. AeroDyn assumes that the built-in 

 
Figure 4. Helical wake pattern of single tip vortex 
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coning, effective coning of the rotor blades from large aeroelastic deflections, and teeter do not 
significantly change the aerodynamics of the rotor in operation. This assumption is tenuous, 
particularly for large deflection angles that will change the shape of the wake by introducing an 
effective skew angle. Because of this concern, the effective coning and teeter may be introduced 
in a future version of the code.  

Tip-Loss Model 

One of the major limitations of the original blade element momentum theory is that there is no 
influence of vortices shed from the blade tips into the wake on the induced velocity field. These 
tip vortices create multiple helical structures in the wake, as seen in Figure 4, and they play a 
major role in the induced velocity distribution at the rotor. The effect on induced velocity in the 
rotor plane is most pronounced near the tips of the blades, an area that also has the greatest 
influence on the power produced by the turbine. To compensate for this deficiency in BEM 
theory, AeroDyn uses a theory originally developed by Prandtl (see Glauert 1935). Prandtl 
simplified the wake of the turbine by modeling the helical vortex wake pattern as vortex sheets 
that are convected by the mean flow and have no direct effect on the wake itself. This theory is 
summarized by a correction factor to the 
induced velocity field, F, and can be 
expressed simply by the following: 

feF −−= 1cos2
π

,  [7] 

where, 

2 sin
B R rf

r ϕ
⎛ ⎞−

= ⎜
⎝ ⎠

⎟

                                                

. [8]1

This correction factor is used to modify the 
momentum part of the blade element 
momentum equations, replacing Equations 5 
and 6 with the following: 

aFdraUrdT )1(4 2 −= ∞ρπ  [9] 

 
Figure 5. Tip-loss factor for blade with constant 
10° inflow angle along span (optimal twist) 

FdraaUrdQ ′−Ω= ∞ )1(4 3ρπ . [10] 

Because of its reasonable accuracy for most operating conditions and easy formulaic 
implementation, the Prandtl model is often used in engineering codes such as AeroDyn. 
However, like most engineering models it has limitations that affect its accuracy. One limitation 
of this model is that it assumes the wake does not expand, limiting its validity to lightly loaded 
rotors. Also, Glauert (1935) showed that the accuracy, relative to the more accurate and 
computationally expensive Goldstein solution (1929), of this model decreases with lower 
numbers of blades (less than three) and higher tip speed ratios. 

Figure 5 is an example of the radial distribution of the tip-loss correction for a blade that is 
operating such that the inflow angle, ϕ, is constant along the span at 10°. When the tip-loss 
model is employed, the tip-loss factor sharply decreases as the radial position along the blade 
approaches the blade tip. This corresponds to a dramatic increase in the induction factor near the 

 
1 Prandtl’s original tip-loss model was based on the inflow angle at the blade tip, φtip. He later revised this (Glauert 
1935) to the local inflow angle, making the calculation easier to implement with minimal loss in accuracy. 
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tip. As the induction factor increases, the resultant relative wind speed for a given blade segment 
decreases along with the angle of attack (see Figure 2). As a result, the loading (lift and drag 
forces) decreases near the tip. 

In addition to the Prandtl model, users of AeroDyn also have the option of using an empirical 
relationship for the tip loss based on the Navier-Stokes solutions of Xu and Sankar (2002) as 
described in the following equations: 

2
5.085.0

Pr
+

= andtl
F

Fnew     for 0.7 ≤  r/R ≤ 1, [11]  

or 

( )

7.0

1
1 7.0Pr =

−
⎟
⎠
⎞

⎜
⎝
⎛−= R

randtl
F

R
rFnew      for  r/R < 0.7. [12] 

These relationships are a correction for the Prandtl model and must be used in conjunction with 
Equations 7 and 8. Note, however, that this correction was based on a specific turbine design 
(UAE Phase 6, Hand et al. 2001) at one wind speed and may not be applicable to all turbine 
configurations. It also results in a tip-loss factor greater than zero at the tip, which is physically 
unrealistic at the tip blade station. 

Hub-Loss Model 

Much like the tip-loss model, the hub-loss model serves to correct the induced velocity resulting 
from a vortex being shed near the hub of the rotor. The hub-loss model uses a nearly identical 
implementation of the Prandtl tip-loss model to describe the effect of this vortex, replacing 
Equation 8 with the following: 

2 sin
hub

hub

B r Rf
R ϕ

⎛ ⎞−
= ⎜

⎝ ⎠
⎟ . [13] 

For a given element, the local aerodynamics may be affected by both the tip loss and hub loss, in 
which case the tip-loss and hub-loss correction factors are multiplied to create the total loss 
factor used in Equations 9 and 10. 

Glauert Correction 

Another limitation of the BEM theory is that when the induction factor is greater than about 0.4, 
the basic theory becomes invalid. This occurs with turbines operating at high tip speed ratios 
(e.g. constant speed turbine at low wind speeds), as the rotor enters what is known as the 
turbulent wake state (a > 0.5). According to momentum theory, this operating state results when 
some of the flow in the far wake starts to propagate upstream, which is a violation of the basic 
assumptions of BEM theory. Physically, this flow reversal cannot occur, and what actually 
happens is more flow entrains from outside the wake and the turbulence increases. The flow 
behind the rotor slows down, but the thrust on the rotor disk continues to increase. To 
compensate for this effect, Glauert (1926) developed a correction to the rotor thrust coefficient 
based on experimental measurements of helicopter rotors with large induced velocities. While 
this model was originally developed as a correction to the thrust coefficient of an entire rotor, it 
has also been used to correct the local coefficient of the individual blade elements when used 
with BEM theory. Because of this, it is important to understand the Glauert correction's 
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relationship to the tip-loss model. When the losses near the tip are high, the induced velocities 
are large; therefore, the possibility of a turbulent wake near the tips increases. Thus, for each 
element the total induced velocity calculation must use a combination of the tip-loss and Glauert 
corrections. Buhl (2004) derived a modification to the Glauert empirical relation that included 
the tip-loss correction as follows: 

2)4
9

50()
9
404(

9
8 aFaFCT −+−+= , [14] 

or, solving for the induction factor, 

5036
)43(12)3650(32018

−
−+−−−

=
F

FFFCF
a T . [15] 

This empirical relationship is different from those in the models of other authors (Manwell 2002; 
Burton 2001). But, this relationship is necessary to eliminate a numerical instability when using 
the Glauert correction to calculate the elemental thrust in conjunction with the tip-loss correction 

model.  

 
Figure 6. Glauert correction for tip-loss factor, 
F = 1.0 

 
Figure 7. Glauert correction for tip-loss factor, 
F = 0.75 

Figure 6 shows an example of the Glauert correction when the tip-loss factor is equal to one. 
When the induction factor, a, is 0.4 the BEM theory and Glauert correction produce the same 
value for thrust coefficient of 0.96. The slopes are also equivalent at this induction factor. When 
the tip-loss factor is less than one (e.g. 0.75, as in Figure 7), the BEM theory predicts a much 
lower thrust coefficient for most induction factors. Thus, to prevent numerical instability in 
AeroDyn, the Glauert correction must also adjust so that the value and slopes again match at the 
induction factor of 0.4. This figure demonstrates the sensitivity of the induction factor to the tip-
loss factor seen in Equation 15.  

Again, note that the Glauert correction was developed as a correction to an entire rotor disk; the 
original researchers did not intend it to be applied to a rotor annulus. However, because of a 
limited amount of experimental data, an alternative model with BEM theory does not currently 
exist.  

Skewed Wake Correction 

Another disadvantage of blade element momentum theory is that it was originally designed for 
axisymmetric flow. Often, however, wind turbines operate at yaw angles relative to the incoming 
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wind, which produces a skewed wake behind the rotor. The BEM model needs to be corrected to 
account for this skewed wake effect. The formulation used in AeroDyn is based on an equation 
originally developed by Glauert (1926) who was primarily interested in the autogyro. The basic 
formula of the skewed wake correction he derived is 

⎥⎦
⎤

⎢⎣
⎡ += ψcos1

R
rKaaskew , [16] 

where the constant K is a function of the skew angle.  

Many skewed wake correction models are derived from this formulation. The one implemented 
in AeroDyn is based on a method developed by Pitt and Peters (1981) (see also Snel and 
Schepers 1995). Assuming steady inflow conditions, the skewed wake formulation is 

⎥⎦
⎤

⎢⎣
⎡ += ψχπ cos

2
tan

32
151

R
raaskew , [17] 

where ψ is defined as the azimuth angle that is zero at the most downwind position of the rotor 
plane, after accounting for both tilt and yaw (see Figure 8). This position has the greatest amount 
of induced velocity, whereas the most upwind position (cosψ = -1) has the least induced velocity. 

 
Figure 8. Coordinates used in skewed wake correction 

Although Glauert's model originally assumed a was the induced velocity for the entire rotor, 
AeroDyn uses this correction for each element. Therefore, a and askew apply to the local 
elemental induced velocities. 

Notice that the constant K in Equation 16 is a function of the wake skew angle, χ, rather than the 
rotor yaw angle, γ. The wake angle is the actual flow angle leaving the turbine and is slightly 
larger than the skew angle, which is defined as the difference between the incoming flow and 
rotor plane, as seen in Figure 8. Using the analysis of Coleman et al. (1945), we can relate the 
wake skew angle to the yaw angle in the following formula: 

)(cos

)
2

tan(sin
tan

aU

aU

−

−
=

∞

∞

γ

χγ
χ , [18] 

which can be approximated by the following relationship according to Burton et al. (2001): 
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γχ )16.0( += a . [19] 

As with previous models, the skewed wake correction has limitations. The major limitation of 
this model is that it assumes a cylindrical wake, which is valid only for lightly loaded rotors. 
Also, there is no firm theoretical basis for applying this correction to BEM theory, even though it 
has improved results for predicting yaw moments and motions when compared with those of the 
standard theory (Hansen 1992; Snel and Schepers 1995). In addition, recent research has found 
that this correction may be too large in some situations (see Eggers et al. 2000). We believe that, 
for wind turbines consistently operating in yaw, the generalized dynamic wake model described 
below is a better alternative for making more accurate predictions of the turbine aerodynamics. 

Other Corrections 

Previous researchers (Wilson and Patton 1978) have suggested various other corrections to the 
BEM theory. These corrections include accounting for the blade thickness effect on local angle 
of attack, cascade width for high solidity turbines, and spanwise gaps for partial span pitch 
control. Blade thickness and cascade effects can be aerodynamically significant near the rotor 
hub and may affect the in-plane yaw forces on the rotor. At this time, AeroDyn does not model 
these effects, but future research may necessitate adding these corrections at some later time. 
Spanwise gaps are not modeled in AeroDyn because partial span pitch control is not used in most 
modern turbine designs. 

Final Iteration Procedure for Blade Element Momentum Theory 

Now that all of the equations for BEM theory have been established, we will identify the 
iteration procedure used in AeroDyn to calculate the induced velocities, angles of attack, and 
thrust coefficients for each blade element along the span of a blade. To begin the calculation we 
must first estimate the axial induction factor. One efficient way to do this is to use Equations 21 
and 27 below, assume that the inflow angle ϕ is small (sinϕ ≈ ϕ), the tangential induction a′ is 
zero, the tip and hub-loss corrections F are one, the drag coefficient Cd is zero, the lift 
coefficient, Cl = 2πα, and finally, α = ϕ−β. After some rearranging, we arrive at the initial 
estimate of the axial induction factor: 

[ )'8(''44'2
4
1 2 πσβσπλσπλσπλ ++−−+= rrra ]. [20] 

From here we can estimate the inflow angle using an initial assumption of zero for the tangential 
induction, a′ and 

ipe

ope

var
vaU

−

−∞

++Ω

+−
=

)'1(
)1(

tanϕ . [21] 

Next, AeroDyn determines the thrust coefficient for the element using the following: 
2

2

'(1 ) ( cos sin )
sin
l d

T
a C CC σ ϕ ϕ

ϕ
− +

= . [22] 

Then, the tip- and hub-loss corrections are calculated as follows: 
( )

2 sin12 cos
B R r

r
tipF e ϕ

π

⎛ ⎞−
−⎜ ⎟− ⎝= ⎠  [23] 
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( )
2 sin12 cos

hub

hub

B r R
R

hubF e ϕ

π

⎛ ⎞−
−⎜ ⎟

− ⎝= ⎠  [24] 

tiphub FFF = . [25] 

Now, if CT > 0.96F, the element is highly loaded and the modified Glauert correction will be 
used to determine the new axial induction factor: 

5036
)43(12)3650(32018

−
−+−−−

=
F

FFFCF
a T . [26] 

If CT ≤ 0.96F, the standard BEM theory is used to calculate the axial induction: 
12

)sincos('
sin41

−

⎥
⎦

⎤
⎢
⎣

⎡
+

+=
ϕϕσ

ϕ

dl CC
Fa . [27] 

The tangential induction factor is calculated using 
1

)cossin('
cossin41'

−

⎥
⎦

⎤
⎢
⎣

⎡
−

+−=
ϕϕσ

ϕϕ

dl CC
Fa . [28] 

And finally, the effect of skew is included using the skewed wake correction factor: 

⎥⎦
⎤

⎢⎣
⎡ += ψχπ cos

2
tan

32
151

R
raaskew . [29] 

This process is then repeated for each element, starting again with Equation 21 and iterated until 
the values of induction factors and inflow angle have converged to their final values. 
In AeroDyn, the user has some control over how the induced velocities are calculated. Four of 
the options in the calculation routine are (1) whether to include drag in the induction calculations 
(axial or tangential), (2) whether to include tip losses, (3) whether to include hub losses, and (4) 
whether to calculate rotational induction. If the user chooses not to include drag in the induction 
calculation (as recommended by Wilson and Lissaman 1974) the Cd term in the above equations 
is set to zero. Similarly, if the tangential induction is neglected, AeroDyn will ignore Equation 28 
and assume all induction is in the axial direction. Finally, if both tip and hub losses are ignored, 
the parameter F will be set to one for all of the above equations. If tip losses are desired but not 
hub losses, the parameter F will be calculated only near the tip, and likewise when only hub 
losses are modeled. 
Currently in AeroDyn, these equations are not directly coupled with the dynamic stall routines 
explained below. In this iteration process, only static coefficients of lift and drag are used to 
calculate the properties of the wake. Once all of the induced velocities and angles of attack are 
calculated, the dynamic stall routines are called and the forces returned to the aeroelastic code 
are calculated. This decoupling was assumed for two reasons. First, the wake cannot fully 
respond to short-term dynamic stall events, so they should not always affect the wake. Second, 
the code is faster and simpler without this coupling. However, some dynamic stall events such as 
those due to persistent skewed flow can affect the entire wake, so this assumption is not always 
valid. The decoupling should be refined after future research. This is another reason that the 
blade element momentum method is not preferred for unsteady or highly skewed flows. 
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Generalized Dynamic Wake 

The generalized dynamic wake (GDW) model of AeroDyn is based on the work of Peters and He 
(1989) and was implemented in the code by Suzuki (2000) for his Ph.D. thesis at the University 
of Utah. This model was originally developed for the helicopter industry, and it is also known as 
the acceleration potential method. An advantage of this method is that it allows for a more 
general distribution of pressure across a rotor plane than BEM theory. It is an extension of the 
often-used Pitt and Peters (1981) model, with more flow states and a fully nonlinear 
implementation to account for turbulence and spatial variation of the inflow.  

The GDW method is based on a potential flow solution to Laplace's equation. Kinner (1937) 
used this solution to develop the equations for the pressure distributions in the rotor plane, which 
consist of an infinite series of Legendre functions in the radial direction and trigonometric 
functions in the azimuthal direction. In his derivation, Kinner started from the Euler equations 
(inviscid and incompressible flow), assumed that the induced velocities were small in 
comparison to the mean wind speed and regarded the rotor as an infinite number of slender 
blades, to keep the solidity low.  

The main advantages of the generalized dynamic wake method over blade element momentum 
theory include inherent modeling of the dynamic wake effect, tip losses, and skewed wake 
aerodynamics. The dynamic wake effect is the time lag in the induced velocities created by 
vorticity being shed from the blades and being convected downstream. Figure 9 contains an 
example of the time lag effect on the power output of a turbine. It shows the measured power 
output of the Tjæreborg turbine (Suzuki 2000) operating in a 10.6 m/s mean wind. During a 60 
second period, the turbine blades were pitched from 0.2° to 3.9° over a period of 1.0 seconds and 
then back to 0.2° again. After each blade pitch change, the power changes quickly resulting in an 
overshoot and then gradually returns to a new equilibrium value over the next 25+ seconds. Also 
in the figure are predictions of this event using both BEM and GDW theory. Notice that the 
BEM theory has no time lag, but the GDW does. However, the time constant is shorter than that 
exhibited by the data in the figure. The small oscillations in the BEM prediction are due to 
structural vibrations and not the aerodynamic model itself. We estimate that similar amplitude 
structural oscillations also appear in the GDW model. Therefore, most of the overshoot seen in 
Figure 9 is due to the aerodynamic time lag predicted by the model. This time lag is longer than 
that experienced by helicopters and was calibrated to typical wind turbine response times using 
experimental data in Suzuki's thesis (2000). 

Another advantage of this method is that the induced velocities in the rotor plane are determined 
from a set of first-order differential equations, which can be solved using a non-iterative 
technique. The technique used in AeroDyn is the fourth-order Adams-Bashford-Moulton (Press 
et al. 1982) predictor-corrector method. Because iteration is not required, the model can also be 
directly incorporated with a dynamic stall model for determining the aerodynamic coefficients of 
each blade element. Although, as currently written, AeroDyn determines the dynamic stall 
effects after the GDW equations have been solved. 
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Like the BEM theory, the GDW method has its 
limitations. As with most wake models, the 
generalized dynamic wake was developed for 
lightly loaded rotors and assumes that the 
induced velocities are small relative to the 
mean flow. This basic assumption leads to 
instability of the method at low wind speeds 
when the turbulent wake state is approached 
(Laino and Hansen, 2004). To avoid this 
computational instability, AeroDyn currently 
switches to the BEM method when the mean 
wind speed is below 8 m/s. Another 
disadvantage of the model is that it does not 
account for wake rotation. To correct for this, 
AeroDyn uses the BEM equation to calculate 
the tangential induction factor, as in Equation 
28. Finally, the GDW method assumes that the 
rotor plane is a flat disk. Therefore, the effect of large aeroelastic deflections or significant 
coning of the rotor blades on the wake aerodynamics will not be accurately modeled. 

 
Figure 9. Generator power output during rapid 
pitch changes (from 0.2° to 3.9° and back) for 
the Tjæreborg turbine, Suzuki (2000)  

Basic Derivation 

The basic governing equations of the generalized dynamic wake are derived from the Euler 
equations. Assuming that the induced velocities are small perturbations relative to the freestream 
inflow, conservation of momentum simplifies to 
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and conservation of mass resulting in 
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, [31] 

finally leading to Laplace's equation for the pressure distribution: 
02 =∇ p . [32] 

It is convenient to non-dimensionalize these equations with the rotor tip speed, which is a widely 
used convention in rotorcraft aerodynamics, and also the hub-height wind speed, which is 
common in wind turbine aerodynamics. This results in the following nondimensional quantities: 

 

time:  [33] tt Ω=ˆ

displacements: 
R
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Note that most of these dimensionless variables are dependent on the rotor speed, Ω. Because the 
rotor speed may change over the course of a simulation (e.g. a variable speed turbine), these 
quantities must be calculated at the beginning of each time step. 

The two primary equations for the generalized dynamic wake are then made dimensionless. 
Laplace’s equation (Equation 32) is also true for the dimensionless pressure:   

02 =Φ∇ , [37] 

and the momentum equation becomes 
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The boundary conditions for these differential equations are given by the aerodynamic loading 
on the rotor blades and the requirement that the pressure return to ambient pressure far from the 
rotor. Also, the pressure discontinuity across the rotor plane must apply a force equal to the rotor 
thrust.  

Using linear superposition, the pressure field can be divided into two components: one modeling 
the spatial variation of the pressure distribution, ΦV, and one modeling the unsteadiness, ΦA, 
where: 

AV Φ+Φ=Φ . [39] 

By dividing the pressure field into two components, Equation 38 can also be divided into two 
separate equation sets as follows: 
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Assuming that the differential equations (Equations 40 and 41) are linear and can be represented 
by a set of operators L and E, the equations become: 

][ˆ
ˆ
ˆ * A

i
i Lu

t
u

Φ==
∂
∂

, [42] 

and 
][ˆ V

i Lu Φ= . [43] 

As long as the operators L and E are invertible the solution for the dimensionless pressure field is 

[ ] [ ]* 1 1 ˆˆ uEuLAV −− +=Φ+Φ=Φ . [44] 

If an operator M is defined as the inverse of E, Equation 44 becomes, 

[ ] [ ] Φ=+ − uLuM ˆˆ 1 * . [45] 

This is the general form of the governing equation of the generalized dynamic wake model that 
relates the induced velocity to the pressure field on the rotor disk. The methods used to solve 
these equations are described below. 

Pressure Distribution 
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Figure 10. Contours of constant ν in the x-z 
plane 

 
Figure 11. Contours of constant η in the x-z 
plane 

Kinner (1937) developed the pressure distribution that satisfies Laplace’s equation (Equation 37) 
and that gives pressure discontinuity across a circular disk (the rotor). This solution was 
originally developed for the problem of a circular wing, but with different boundary conditions, 
also applies to a yawed actuator disk. The pressure distribution is given in an ellipsoidal 
coordinate system. 
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where and ν , η  and ψ  are ellipsoidal coordinates defined by the following relationships: 

ψην cos11 22 +−=x  [47] 

ψην sin11 22 +−=y  [48]  

νη=z . [49] 

Note that this xyz coordinate system follows the convention of the helicopter industry, with the x-
y plane parallel with the rotor plane, and the positive-z-axis perpendicular to the rotor plane in 
the upwind direction (see Figure 12). Also, note that the relationship between the dimensionless 
radius, r̂ , and ν  in the ellipsoidal coordinate is given as 21ˆ ν−=r . 

The ν -η -ψ  coordinate system covers the entire three-dimensional space once and only once, if 
ν, η, and ψ are restricted to the ranges 

11 ≤≤− ν  [50] 
∞≤≤η0  [51] 

πψ 20 ≤≤ . [52] 

Figures 10 and 11 show contours of constant ν and η, respectively, in the x-z plane 
(perpendicular to the rotor plane). The constant ν surfaces are hyperboloids and the constant 
η surfaces are ellipsoids. Both families of surfaces are azimuthally symmetric about the z-axis. 
The coordinate ψ is the azimuthal angle measured from the positive x-axis and is positive in the 
clockwise direction. The η = 0 surface represents both sides of the disk surface. 
The pressure field of Equation 46 is discontinuous only within the unit circle (the rotor), where 
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0η = . And, because the pressure is perfectly continuous outside of the rotor, this distribution 
satisfies one of the boundary conditions that the rotor thrust force is zero outside the rotor 
boundary. 

This pressure discontinuity provides thrust force on the rotor that simulates the aerodynamic 
forces on the blades. Although the actual aerodynamic forces act only on the blades and are 
discretely distributed, the distribution in Equation 46 gives a continuous distribution. However, 
the distribution starts to have peaks at the blades and to show the characteristics of discontinuity, 
as the number of terms of the series solution (flow states) increases. 

The rotor disk pressure loading can be obtained as the pressure difference between the upwind 
and downwind surfaces of the rotor plane (He 1989), 
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or, 
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The dimensionless pressure quantities, and , couple the pressure distribution to the forces 
on the blades, as explained below.  
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The term  is called the “normalized” associated Legendre function of the first kind, since 
it satisfies 
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Induced Velocity Distribution 

Similar to the expansion of the pressure distribution, the induced velocity distribution (the 
component normal to the rotor plane) can be expressed as an infinite series as shown in Equation 
60 (He 1989): 
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where the radial shape functions, , are linearly independent and complete for a given 

harmonic, r. The coefficients  and  can be regarded as the time-dependent states of the 
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induced-velocity field. The shape functions are defined as 
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!!n  is a double factorial, defined as 
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For example, the first four shape functions of r = 2 are 
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Expansion of Governing Equation 

With both the dimensionless pressure at the rotor disk and the induced velocity distribution 
expressed as infinite series of sines and cosines, they can be combined into the governing 
equation (45) (He 1989). The two operators are represented by square matrices. 

The pressure coefficients in Equation 54, and , and the velocity coefficients in Equation 

60, and , have a relationship shown in Equations 68 and 69, which separate the cosine 
terms and sine terms. Equation 68 is the governing equation for the cosine terms and Equation 69 
is the governing equation for the sine terms. 
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where [Mc] and [Ms] are the cosine and sine terms of the M-operator (see Equation 45) and 
similarly with the [Lc] and [Ls] matrices. The M-operator (apparent mass matrix) is nearly 
identical for both of the cosine and sine equations, with the exception that [Mc] has elements for 
m = 0 and [Ms] does not. The M-operators for both sine and cosine terms are given as 
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This mass matrix is purely diagonal, indicating that there is no coupling in either the harmonic or 
radial direction. This diagonal structure also simplifies the computation in a time marching 
scheme. 
The L-operator (inflow gain matrix) is different for the sine and cosine equations and can be 
divided into matrices dependent on the flow parameters, , and the wake skew angle, ]ˆ[V ]~[L , as 
follows: 

]ˆ[]~[][ 11 ccc VLL −− =  [72] 

]ˆ[]~[][ 11 sss VLL −− = . [73] 

The matrices dependent on wake skew angle can be expressed as 
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),min( mrl =  [77]  

||2
tan

λ
µχ
+

==
TV

X       ( 0 2χ π≤ ≤ ) [78] 

2
2

2

2 (2 1)(2 1)( 1)
( )( 2) ( ) 1

n j r

rm
jn m r

n j

n j
j n j n j nH H

+ −

+ +−
Γ =

⎡ ⎤+ + + − −⎣ ⎦
,    for evenmr =+  [79] 

)12)(12(
)(

2 ++
−

=Γ
jn
mrsign

HH r
j

m
n

rm
jn

π
,    for oddmr =+ and 1=− nj  [80] 

0=Γrm
jn ,     for and oddmr =+ 1≠− nj . [81] 

Note that the wake angle function of Equation 78 is determined from the average wake angle 
using the flow parameters described below. Also, the terms  and mX m rX − , in Equations 74 - 76, 
can become . This zero raised to the zeroth power is considered one. 00

As with the M-operator the matrices dependent on flow parameters, , are nearly identical for 
both of the cosine and sine equations, with the exception of m = 0 as follows: 
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n
c VV ˆˆ  for m = 0, 1, 2, 3,... [82] 
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where 

TVV =0
1̂  for  [84] )1,0(),( =nm

VV m
n =ˆ  for . [85] )1,0(),( ≠nm

The flow parameters of Equations 84 and 85 are based on the inflow (including blade motion) 
and induced velocities described in the next section. 

Flow Parameters  

The inflow parameter, V, accounts for the 
energy that the rotor subtracts from the flow. It 
is calculated as follows (He 1989):  

( )
22

2

λµ
λλλµ

+

++
= mV  [86] 

and the total flow parameter 
22 λµ +=TV . [87] 

where µ is the advance ratio (in-plane velocity 
divided by tip speed), and the induced 
velocities, λ, are found by 

fm λλλ +=  [88] 

 
Figure 12. Velocities and coordinates used in 
the GDW model 

R
U

f Ω
= ∞ χλ cos

  [89] 

And mλ  is calculated using Equation 90: 
0
13αλ =m . [90] 

The directions of each of these quantities are shown in Figure 12. Again, the wake skew angle, χ, 
of Equation 89 is the average over the entire rotor. The coupling between VT and  makes the 
theory nonlinear. 

0
1α

Pressure Coefficients 

The pressure coefficients, and , need to be coupled with the blade loading, which gives 
the boundary conditions of the model. Let  be equal to the aerodynamic force normal to the 
rotor plane acting on blade element i of blade q (the element thrust force). If this element thrust 
force is normalized by the thrust force from the dynamic pressure of the flow: 

mc
nτ ms

nτ
q
iL 
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The pressure coefficients are the normalized total thrust force multiplied by the radial expansion 
shape function and the azimuthal mode shape (modified from He 1989). 
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The sine terms (Equation 93) do not need to be defined for m = 0, because they are always 
multiplied by zero. The cosine terms for m = 0, however, need a slightly different definition 
because of the way ]~[ cL  is defined for m=0 in Equation 74. ]~[ cL  in Equation 74 is only one half 
of the ]~[ cL  in Equation 75 (modified from He, 1989). Therefore, 
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Final Governing Equations 

The final set of equations for the GDW model using the parameters defined above are: 
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The cosine term and the sine terms are not coupled. This indicates that the wake rotation is not 
considered in the generalized dynamic wake model itself. However, as mentioned above, 
AeroDyn uses the BEM method (Equation 28) to calculate the tangential components of the 
induced velocity. This completes the equations necessary for the generalized dynamic wake as 
implemented in AeroDyn. 

Procedure for Generalized Dynamic Wake Calculations 

The above equations are written for an infinite number of azimuthal harmonics and radial shape 
functions. When implemented into a computer algorithm, the number of functions used in the 
modeling of the pressure distribution and induced velocity field must be truncated. For the 
induced velocity field, 
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where N is the highest harmonic in the azimuthal direction and Sr is the number of radial shape 
functions for the rth harmonic. The AeroDyn user must choose the values of the number of 
harmonics and radial shape functions to be modeled based on the structural dynamics and the 
desired resolution of the pressure or induced velocity distribution. The number of harmonics is 
often related to the number of blades. For example, He (1989) states that for a time-averaged 
solution of a four-bladed rotor, the induced velocity distribution can be truncated at the fourth 
harmonic, with little loss in accuracy. More harmonics may be required for an unsteady 
calculation.  

Based on the number of harmonics, the number of radial shape functions can be determined. 
Table 1 shows the proper choice of the number of radial shape functions based on the 
mathematical consistency of the highest polynomial power of r̂  for the radial shape function at 
each harmonic value, m. For example, in order to truncate the induced velocity distribution at the 
fourth harmonic (N = 4) with a radial variation up to 8r̂ , the number of shape functions for each 
harmonic is then S0 = 5, S1 = 4, S2 = 4, S3 = 3, and S4 = 3. Now, remember that for m = 0 only one 
inflow state is modeled, while all other values of m model two inflow states (i.e. the sine and 
cosine terms of Equation 97). We can then calculate the total number of inflow states for this 
example, 5+2(4+4+3+3) = 33. Whereas, if we calculate the total number of inflow states using 
all harmonic values for that given power of r̂ , we arrive at 45 inflow states, which is the last 
column in the table.  
Table 1. Choice for the Number of Inflow Radial Shape Functions 

m (harmonic value) Highest 
Power 
of r̂  0 1 2 3 4 5 6 7 8 9 10 11 12 

Total 
Inflow 
States 

0 1             1 

1 1 1            3 

2 2 1 1           6 

3 2 2 1 1          10 

4 3 2 2 1 1         15 

5 3 3 2 2 1 1        21 

6 4 3 3 2 2 1 1       28 

7 4 4 3 3 2 2 1 1      36 

8 5 4 4 3 3 2 2 1 1     45 

9 5 5 4 4 3 3 2 2 1 1    55 

10 6 5 5 4 4 3 3 2 2 1 1   66 

11 6 6 5 5 4 4 3 3 2 2 1 1  78 

12 7 6 6 5 5 4 4 3 3 2 2 1 1 91 

Once the user determines number of inflow states, the calculation of the induced velocity 
proceeds as follows. Because the GDW method in AeroDyn is based on a solution of ordinary 
differential equations in time, it must rely on initial values of various parameters to accurately 
calculate the effect of the wake. The initial values are based on BEM calculations of the 
operating turbine over the first second of the time simulation. After one second has passed 
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in the simulation, AeroDyn switches from the BEM method to the GDW using the BEM solution 
as the initial condition for the GDW method. The blade forces are used to calculate the pressure 
coefficients, and , in Equations 91 through 94, which form the right hand side of 
Equations 95 and 96. Equations 92-94 transform the loading on the blades to a pressure 
distribution around the entire actuator disk. The apparent mass matrix, [M], is calculated for each 
harmonic and radial shape function based on Equations 70 and 71. The inflow gain matrix, 

mc
nτ ms

nτ

]~[L , 
is calculated based on the wake skew angle in the formulae given in Equations 74-81. The flow 
parameter matrix, , is assembled based on formulae 82-90. Once all of the matrices are 
assembled, Equations 95 and 96 are solved using a fourth-order Adams-Bashford-Moulton (Press 
et al. 1982) predictor-corrector method, for each of the azimuthal harmonics and radial shape 
functions. The solutions of these equations are the coefficients of Equation 60, and . These 
coefficients are then fed back into Equation 60, along with the radial shape functions of 
Equations 61-63, in order to calculate the induced velocity field at any point in the rotor plane. 
These induced velocities are then used to determine the angle of attack for each element. This 
angle of attack is passed to the airfoil aerodynamics routines that return the elemental force 
based on either static or dynamic stall airfoil conditions as explained below. These forces are the 
output of the AeroDyn routines and are passed back to the aeroelastic code for further analysis. 
Starting at the next time step, the process is repeated using the most recent estimated forces to 
calculate the pressure coefficients in Equations 92 through 94, which serve as the initial 
conditions for Equations 95 and 96. 

]ˆ[V

r
jα r

jβ

Airfoil Aerodynamics 
The aerodynamics calculations in AeroDyn are based on the pseudo two-dimensional properties 
of the local airfoil aerodynamics. The term “pseudo” is used because the user can modify the 
airfoil properties to include three-dimensional effects such as those from aspect ratio and 
rotational augmentation of the rotor blades. The user has two options for calculating the airfoil 
aerodynamics: static airfoil tables or a dynamic stall model. If the static airfoil tables are used, 
the aerodynamic performance of each airfoil is simply a table lookup of the data provided in the 
airfoil input file. If the user selects the dynamic stall option, the static airfoil coefficients are 
modified as a function of angle of attack and rate of change of angle of attack, as described in the 
next section. No other adjustments are made to the static airfoil properties. If the user wishes to 
include the effects of rotational augmentation, this must be accomplished using a static airfoil 
data table that has been adjusted by the user. 

The importance of using accurate airfoil properties cannot be overstated, nor can the difficulty of 
obtaining reliable data for some airfoils that are in common use. It is well established that 
roughness due to soiling or manufacturing, deviation of the actual section from the design shape, 
Reynolds number, and three-dimensional, rotating blade effects can all have a significant 
influence on load predictions. AeroDyn places the entire burden of obtaining reliable airfoil data 
upon the user. AeroDyn does some very simple bounds checking in the hope of detecting an 
angle of attack or coefficient that is outside a reasonable range. This may detect typographical 
errors, but it should not be relied on to detect inaccurate airfoil data. 

It is our belief, based upon numerous model validation studies (see Simms et al. 2001 and 
Tangler 2002), that errors in airfoil data tables are the single largest source of error in most rotor 
load and performance predictions. When we "tune" a model to achieve a better match with test 
results, we usually make small changes in the airfoil tables (particularly near stall) and realize 
improvements in all predicted quantities. Unfortunately, we are not aware of a consistent method 
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Figure 13. Lift coefficient for S809 airfoil at 
Reynolds number of 750 million. 

 
Figure 14. Drag coefficient for S809 airfoil at 
Reynolds number of 750 million. 

to improve the accuracy of airfoil data for modeling real blades in normal wind turbine operating 
conditions—other than wind-tunnel measurements using the appropriate Reynolds number, 
surface roughness, and as-built airfoil profile. 

Static Airfoil Characteristics 

When relying on static airfoil characteristics, the airfoil sections are represented in AeroDyn by 
tables of lift, drag, and pitching moment (if desired) coefficients as a function of angle of attack 
and Reynolds number. With these tables, linear interpolation is used to determine the 
aerodynamic coefficients at a particular angle of attack. Dynamics codes frequently simulate 
conditions in which the angle of attack of a blade element is well outside the normal operating 
range of an airfoil. If AeroDyn encounters an angle of attack that is outside the range of the 
airfoil data table, an error message is generated and program execution stops. For this reason, we 
recommend that airfoil data tables always cover the entire possible range of angles of attack 
(-180° to +180°). 

Often, the aerodynamic coefficients of an airfoil are measured over a limited range of angles of 
attack and are rarely available over the entire range of ±180°. In order to generate coefficients 
over this range, wind tunnel data can be extrapolated by assuming the airfoil behaves like a flat 
plate at high angles of attack. The advantage of using flat-plate characteristics is that the 
aerodynamic coefficients depend only on the aspect ratio of the plate. Viterna et al. (1982) 
developed a method to do this extrapolation and it has been written into an NREL program 
entitled FoilCheck (Laino and Hansen 2002). Note that this is not a capability of AeroDyn, but 
the theory is included here for completeness. 

Figures 13 and 14 contain aerodynamic coefficient data over an angle of attack range of ±180° 
for an S809 airfoil at a Reynolds number of 750 million. The original data from the wind tunnel 
test (Ramsay et al. 1995) were measured in a range of angle of attack from -20° to 40°. The 
remaining values have been calculated using FoilCheck.  

From a point just beyond the available data (40° for this case), called the matching point, to 90° 
the Viterna equations are applied in their original form. The equations are taken from a report by 
Viterna and Janetzke and are shown below. (Note that there is a typographical error in the 
equations in the report, but the correct equations are given below.)  

ARCD 018.011.1
max

+= , [98] 
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and subscript s denotes the value at the stall angle or the matching point if data above stall is 
available. AR is the blade aspect ratio. The lift is given by 
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These equations yield CL = 0 and CD = CDmax at α = 90°, and the stall (or matching point) values 
at αs. Thus it is important to select αs carefully. Above 90° and from –180° to the lowest angle of 
attack with data (-20° in this example), the lift coefficient values are obtained by scaling and 
reflecting the values from the matching point (40°) to 90°. The scaling and reflections are 
evident in Figure 13. FoilCheck applies a scaling factor of 0.7 to CL to account for the 
asymmetry of the airfoil. That is, all lift values are reduced by 30% from the values between the 
matching point (40°) and 90°. CL is forced to zero at α = ±180°. Drag values are not scaled, just 
reflected about the zero angle of attack, as seen in Figure 14. Linear interpolation is used to 
connect the various regions after scaling and reflection.  

Pitching moment coefficients can also be extrapolated from tabular data. But the methods used to 
accomplish this are less rigorous, as described in Hansen and Laino (2002).  

Each blade element can have its own airfoil data table, making it straightforward to account for 
varying airfoil section properties along the blade span. However, at present, all blades must be 
aerodynamically identical (except the pitch angle). 

AeroDyn will accept airfoil data tables that use two inputs: angle of attack and a second 
parameter that is controlled by the user. This optional parameter could be, for example, Reynolds 
number or a flap or aileron setting. If the second parameter is Reynolds number, the code will 
interpolate the airfoil data tables based on the local element Reynolds number. If the second 
parameter is something other than Reynolds number, the user must provide a separate section of 
code (such as a controller to determine the aileron setting) that assigns the value of the second 
parameter. Linear interpolation is also used for intermediate values of the second table lookup 
parameter. 

Dynamic Stall Model 

Dynamic stall events are evident from measurement of aerodynamic coefficients on operating 
wind turbines (as reported in Hansen and Butterfield 1993). Figure 15 illustrates dynamic stall 
events measured at the 30% span location of the Combined Experiment Rotor. On wind turbine 
blade airfoil sections, unsteady or oscillatory angle of attack time histories that produce dynamic 
stall events occur because of the variation in wind velocity over the rotor disk. These variations 
in velocity are caused by horizontal and vertical wind shears, vertical wind, yaw misalignment, 
and turbulence in the wind. 
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Figure 16. Coordinate system and forces 
used in dynamic stall modeling 

 
Figure 15. Dynamic stall events measured at 
the 30% station of the CER (Pierce 1996) 

The dynamic stall model of AeroDyn is based on 
the works of Beddoes and Leishman (1989). 
Most of the text from this section was taken, 
essentially verbatim, from two Master of Science 
theses from the University of Utah by Pierce 
(1996) and Minnema (1998). These theses 
provide details on the modification, 
implementation, and validation of the Beddoes-
Leishman dynamic stall model in AeroDyn. In 
this report we provide a summary, the original 
theses should be consulted for more details. 
Also, for the original development of the 
Beddoes-Leishman model see Leishman and 
Beddoes (1986, 1989) and Leishman (1989).  

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30

Angle of Attack (deg)

C

 
Figure 17. Typical attached flow unsteady 
response of the normal force coefficient 

The forces used in the Beddoes-Leishman model (normal and chordwise) are slightly different 
than the forces used in the other models described in previous sections. For clarity, Figure 16 
shows the coordinate system and forces used in this model relative to the forces in Figure 3. 

The Beddoes-Leishman model is a semi-empirical model that is based on airfoil indicial 
response. Indicial response produces the normal force coefficient (CN), and the moment force 
coefficient (CM) as a function of time for a step change in angle of attack. The indicial response 
is derived from the solution of the linearized differential equations for an unsteady, 
compressible, inviscid fluid (Bisplinghoff et al. 1955). The increment in CN due to a step change 
in angle of attack (∆α) is broken into two components, a non-circulatory component (CI

N), and a 
circulatory component (CC

N), given as 
∆ ∆

∆ ∆

C C

C
M

N
C

N
C

N
I I

=

=

α α

α

φ α

φ α4 , [103] 

where CNα is the normal force coefficient curve slope, M is the Mach number, φC
α is the 
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circulatory indicial function, and φI
α is the non-circulatory indicial function.  These indicial 

functions are nearly pure exponential functions and are represented by exponential functions in 
the model. In the Beddoes-Leishman model, the chordwise force coefficient (CC) response is 
based on the circulatory component of CN. The airfoil attached flow response due to a general 
angle of attack history is calculated from the superposition of individual indicial responses for 
each step. A typical CN  hysteresis for an unspecified airfoil with attached flow is shown in 
Figure 17. 
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Figure 19. Typical normal coefficient 
response of an airfoil with attached flow 
modified by separation point 
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Figure 18. Unsteady separation point curve 

It is important to note that AeroDyn treats all changes in angle of attack equally. This is true 
whether the changes are due to blade flap or lag motion, pitch motion, or changes in local 
relative wind velocities. 

The calculated attached flow response is then modified based on the position of the effective 
flow separation point on the low-pressure side of the airfoil. Flow separation from the airfoil 
results in a loss of circulation about the airfoil, reducing aerodynamic coefficients from the 
attached flow values. The separation point is given by f = x/c, where x is the point of flow 
separation measured from the leading edge, and c is the airfoil chord length. An approximation 
to Kirchhoff theory (Thwaites 1960) used by Beddoes relates CN and CC to the separation point 
given as: 
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 [104] 

where α is the angle of attack, and α0 is the zero-lift angle of attack. 

The static effective separation point is calculated from static CN data by solving Equation 104. 
The effective separation point versus angle of attack is then curve fit using an exponential 
function. The parameter , calculated from Equation 104 using static data, is referred to as the 
effective separation point, since it represents the amount of separation according to 

f
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Kirchhoff theory, which is an inviscid solution, 
but it might not necessarily represent the actual 
point of flow reversal on the airfoil. It does, 
however, provide a method of representing the 
effect and dynamics of separation. In the 
Beddoes model, an empirically derived first order 
lag is applied to the movement of the effective 
separation point to account for the time lag in 
movement of the separation point during 
unsteady conditions. Figure 18 shows the 
calculated CN of an unspecified airfoil including 
the effects of unsteady separation. The unsteady 
effective separation point curve is shown in 
Figure 19. 

The final main component of the model 
represents the vortex buildup and shedding that 
occurs during dynamic stall. The vortex lift 
contribution is empirically modeled as an excess 
circulation in the vicinity of the airfoil. The 
magnitude of the increase in lift is based on the 
difference between the attached flow CN and the 
CN value obtained from the Kirchhoff equation. Empirically derived time constants are used to 
govern the growth, decay, and motion of the vortex. As the airfoil pitches upward, the vortex 
strength is allowed to build. When the first-order-lagged, attached-flow CN (denoted as C'N) 
exceeds the CN value at stall (CN1), the vortex is allowed to begin convecting across the airfoil. A 
nondimensional time constant (τν) tracks the position of the vortex across the airfoil. As the 
vortex reaches the trailing edge, the strength is allowed to decay exponentially. The calculated 
CN of an unspecified airfoil, including all model components, is shown in Figure 20. 
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Figure 20. Typical normal coefficient 
response of an airfoil with attached flow, 
separation point, and vortex lift contribution 

The lift coefficient (CL) and drag coefficient (CD) are then calculated from resolving CN and CC 
into components normal and parallel to the velocity direction, and adding the minimum drag 
(CD0) (see Figure 16). 
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Model Modifications 

Some modifications to the model were necessary to make it applicable to the environment and 
airfoils of wind turbines. Beddoes considers angles of attack from approximately -10° to 30°; 
however wind turbine airfoils often operate outside of this range. Because of this, the model 
must be capable of producing aerodynamic force coefficients over the entire range of possible 
angles of attack, which required several modifications to the original model. 

To allow the model to reproduce aerodynamic coefficients at high angles of attack, the angle of 
attack was modified as follows: 

for    
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Figure 21. Exponential curve fit to the 
calculated separation point for a NACA 4415  
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Figure 23. Comparison between data and 
reproduced curve using exponential curve fit 
to separation point data (NACA 4415) 

where α is the current angle of attack and αm is 
the modified angle of attack. The modified angle 
of attack represents the fact that the normal force 
coefficient is somewhat symmetric about +90° 
and -90°. This modified angle of attack is then 
used to calculate the effective separation point 
from the Kirchhoff equation; it is also used in the 
runtime calculation of the attached flow response. 
As mentioned previously Beddoes uses an 
exponential curve fit to the effective airfoil 
separation point calculated from the static data 
using Equation 104 and shown in Figure 21. 
However, this did not work well with some of the 
airfoils tested. Note that all of the figures in this 
section (Model Modifications) use measurements 
of a NACA 4415 airfoil at a Reynolds number of 
1 million (Reuss et al. 1995). As can be seen in 
Figure 22, some important features are lost when 
regenerating the CN versus angle of attack curve 
using the exponential curve fit representation of 
the effective separation point. For this reason, we used a lookup table in which the calculated 
effective separation point values are stored with angle of attack values. Linear interpolation is 
used between points. This method is more applicable to an arbitrary airfoil and accurately 
reproduces the normal force curve. 
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Figure 22. Normal and chordwise coefficient 
separation point curves for a NACA  4415 

Also, upon further investigation into the model, we determined that the calculated CC value, 
which was based upon the circulatory component of CN and the effective separation point 
calculated using CN, at times did not reproduce static values. In some angle of attack ranges, 
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Figure 24. Comparison between measured 
CD, CD reproduced using the current method, 
and CD reproduced by method of Beddoes 
using curve fit CN separation point (NACA 
4415) 
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Figure 25. Comparison between measured 
and reproduced lift coefficient (NACA 4415) 

the model predicted higher or lower drag because of an error in the prediction of CC. This 
resulted in erroneous power output predictions for the rotor. To alleviate this problem two 
effective separation point tables are calculated, one for CN and one for CC. Equation 104 for CC is 
used in the calculation of the CC effective separation point table representing the separation 
affecting CC according to Kirchhoff theory. It is also used in the runtime calculation of CC using 
the dynamic effective CC separation point. During unsteady conditions, the same dynamics are 
applied to each effective separation point. This method allows the model to accurately reproduce 
static values for very general input values of CL and CD. 
For most airfoils, the two tables are similar. However, at times there are differences between the 
two, and even small differences can lead to a significant error in the drag prediction. Figure 23 
shows the two effective separation point curves. The model using two effective separation point 
tables accurately reproduces the static aerodynamic coefficients, as shown in Figures 24 and 25. 
Figure 25 also reveals that the two-table model is more accurate than the original Beddoes model 
with only one table. 
In Figure 26, dynamic stall hysteresis loops are shown for unusual angle of attack ranges as 
calculated by the modified method. Because of the lack of test data, the accuracy of the model 
for high angles of attack is not known. However, the results obtained are at least reasonable. 
At angles of attack near +90° and -90°, and occasionally at other locations, the square root of the 
effective separation point in Equation 104 should be negative to reproduce static aerodynamic 
coefficient values. This created problems in regenerating the aerodynamic force coefficients 
since the negative sign is lost when squaring the value to determine the effective separation 
point. To eliminate this problem, and to ensure proper regeneration of coefficients, the sign of 
the effective separation point is saved with the value of the parameter. The sign is then used 
when regenerating aerodynamic coefficients to ensure accurate regeneration. The process of 
decomposition of the CN is shown below in Equation 107, and the regeneration given is by 
Equation 108. 
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Figure 26. Dynamic normal force coefficient simulations for unusual angles of attack 
(NACA 4415) 
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Similarly for the CC, the process of decomposition is shown below in Equation 109, and the 
regeneration is given by Equation 110. 
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The calculation of the pitching moment coefficient proceeds along a parallel path. A third 
“separation point,” fM, is determined from the static airfoil data. In addition, we found it was 
necessary to apply a saturation function to limit the impulsive contribution to the pitching 
moment when the airfoil encounters an abrupt change in angle of attack (e.g. in tower shadow). 
This is a “patch” that clearly should be replaced by a more accurate calculation of the impulsive 
terms in the original Beddoes-Leishman formulation. Details can be found in Minnema’s thesis 
(1998).  
Beddoes also includes an empirical separation point shift for the "deep stall regime." However, 
whether or not this shifting increases or decreases accuracy depends on the amplitude of 
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oscillation of the airfoil. For high-amplitude oscillations, including the shift increased the 
accuracy. However, for low-amplitude oscillations, greater accuracy was obtained without the 
shift. Also, the shifting was found to cause discontinuities and hence numerical instabilities in 
force calculations for very small angle of attack oscillation amplitudes. For these reasons the 
shifting has been removed from the model used in AeroDyn.  

For extension to deep stall, Beddoes and Leishman include an additional parameter, Φ, for the 
correction of the chordwise force during large separations. However, with the current 
formulation of two effective separation point tables town the use of this additional modification 
seems unnecessary. 

Another modification is needed because of parameters that must be triggered and reinitialized at 
certain locations in the hysteresis. The parameters determine if the vortex strength is building, 
the time at which the dynamic stall vortex begins to convect over the airfoil, and the position of 
the vortex. The difficulty arises during general unsteady motion, and at unusual angles of attack 
when it is unclear whether vortex lift should be added, and when parameters should be 
reinitialized. As mentioned previously, the vortex is allowed to build in strength as the airfoil 
pitches toward stall (+90° or -90°). The change in C'N from one step to the next is used to 
determine if the airfoil is pitching toward stall. If C'N is increasing toward stall, a parameter is set 
to allow the vortex strength to build. C'N is used since it is less subject to numerical noise than 
the angle of attack.   

The vortex begins to convect across the airfoil when C'N exceeds CN. At this time a flag is 
triggered and the nondimensional parameter τν tracks the position of the vortex across the airfoil. 
Note that τν starts at zero when C'N exceeds CN1, and increases to one when the vortex reaches 
the trailing edge. After the vortex has passed the trailing edge (τν >1) the vortex strength decays 
with a time constant equal to half of the value used during accumulation with no further 
additions to the vortex strength. Then, τν is reset to zero if the airfoil begins pitching toward stall 
after completing a cycle, and the angle of attack changes sign. The parameter τν is also reset after 
a suitable time delay if the airfoil continues pitching toward stall, which allows a secondary 
vortex to develop and shed using the same dynamics. The frequency of shedding corresponds 
closely to a Strouhal number of 0.2 (Leishman and Beddoes 1986). If C'N does not exceed CN, 
the vortex strength decays as the airfoil pitches away from stall using a time constant equal to 
half of the value used during accumulation. 

The final modification is a result of the effect of the vortex component on CC. As mentioned 
previously, CC is based on the circulatory component of CN. However, Beddoes and Leishman do 
not state whether the vortex component, which is circulatory, should be included in the 
calculation of CC. It was apparent from a study of unsteady data that the vortex component 
contributed to CC. To model this contribution, we added the vortex component of CN to CC in the 
same manner as the circulatory component of CN, but also multiplied by (1 – τν). The vortex 
component was multiplied by (1 – τν), since the effect of the vortex on CC should depend on the 
location of the vortex along the chord. Thus, the vortex contributes to CC in the same manner as 
the circulatory component of CN when near the leading edge of the airfoil, but it goes to zero as 
the vortex reaches the trailing edge. This method produced good agreement with the test data. 

Tower Influence 
The influence of the wind turbine tower on the blade aerodynamics is also modeled in AeroDyn. 
The tower influence model is based on the work of Bak, et al. (2001). This model uses a 
potential flow solution around a cylinder as the base flow field along with a downwind wake 
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model dependent on tower drag coefficient (based on diameter), Cd, and a tower dam model for 
upwind influence. The model provides the influence of the tower on the local velocity field at all 
points around the tower, including increases in wind speed around the sides of the tower and the 
cross-stream velocity component in the tower near flow field. 

Outside of the downwind tower wake, the tower's influence on the nearby dimensionless velocity 
field is based on these equations: 
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where u and v are the components of the horizontal wind in the x and y direction (in a local, 
instantaneous, free-stream wind coordinate system), respectively, normalized by the free-stream 
horizontal wind speed at the point of interest. The parameters x and y are the upwind and cross-
wind distances normalized by the tower radius at the height of interest, as seen in Figure 27. 
Note that the model is dependent upon the drag coefficient of the tower, which can vary over the 
tower as a function of both the height and the Reynolds number, as specified by the user. This 
tower influence is used directly as the upwind tower dam effect on the rotor blades.  

The local wind velocity outside of the tower wake is thus: 

localU uU∞=  [113] 

localV vU∞= . [114] 

For downwind rotor situations, a tower wake (velocity deficit) model based on the work of 
Powles (1983) is used. This model is used as an alternative to the wake deficit model provided 
by Bak, et al. because the Bak model uses a defined width that does not increase with downwind 
distance, which is not realistic. 

The wake factor is determined by these equations: 
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where 
22 yxd += , [116] 

Cd is the drag coefficient of the tower section and d is the dimensionless radial distance of the 
point of interest from the tower center. The square root of d is also assumed to be the wake 
width. Figure 27 illustrates these dimensions and the shape of the tower wake. For dimensional 
consistency in Equation 113, d is normalized by the tower section radius. 

If the location is inside the tower wake, as determined by Eqs. 115 & 116, the local velocity in 
the x direction is 

(1 )local wakeU u ∞= − U  [117] 

Whereas the y velocity component remains unchanged from Eqs. 112 & 114 above. 
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Figure 27. Schematic of the tower shadow model with parameters illustrated for a given point. 
The tower wake decays in strength and grows in width as the distance from the tower increases. 

Note that the wake is assumed to align with the instantaneous horizontal wind vector. This 
assumption will be improved in a future revision by aligning the wind with a short-term average 
wind direction. Note also that the wake grows with the square root of the dimensionless distance 
from the tower centerline. This assumption has not been validated against experimental data, but 
it is consistent with the wake models of previous versions of AeroDyn (Laino and Hansen 2002). 
Validation and improvement of the model will occur sometime in the near future. 

Wind Input Files 
The wind input files of AeroDyn are crucial for determining the wind turbine aerodynamics. 
AeroDyn obtains wind input data from either simple “hub-height” wind files or from “full-field” 
wind files that contain turbulent velocity components at points on a grid that covers an area 
slightly larger than the rotor disc and tower. Both of these files contain information about the 
velocity field as a function of time and can be created by measurement or simulation. 

The simplest wind files, the “hub-height” wind files, contain the hub-height wind speed and 
direction, vertical and horizontal wind shear coefficients, a vertical component of wind, and a 
gust velocity. If the file contains only one line of data, those values are used throughout the 
simulation (steady winds). If the file contains multiple lines of data, linear interpolation in time is 
performed to obtain the wind speed at a given instant of time at a given location. The ambient 
wind components at the center of each blade element are determined using the following 
relations: 
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)cos(1 γδ −=VVx  [119] 

)sin(1 γδ −=VVy , [120] 

where x, y, and z are coordinates (seen in Figure 28) measured from the hub location (x usually 
points south and z vertical up), γ is the yaw angle of the rotor plane relative to the x-axis, δ is the 
instantaneous wind direction relative to the x-axis, Vhub is the horizontal wind speed at the rotor 
hub, Hshr and Vshrlin are the linear shear coefficients in the horizontal and vertical directions, 
respectively, Vshr is the vertical shear power-law exponent, R is the rotor radius, and Vgust is a 
gust velocity superimposed upon the entire flow field. Each of these wind descriptors can vary in 
time. 
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If the user chooses to analyze "full-field" winds, 
then data files generated by the NREL code 
TurbSim are typically used. TurbSim generates 
an array containing all three velocity 
components at each point on a square grid 
covering the rotor area as well as points along 
the turbine tower. To provide a reasonable model 
of time-varying atmospheric turbulence, winds 
are typically sampled at 20 Hz. Details on this 
program can be found in the report by Jonkman 
and Buhl (2004). 

For these "full-field" files, linear interpolation in 
time and space is used to determine the velocity 
components at the location of a blade element. It 
is important to note that interpolation is a form 
of averaging or smoothing. If the velocities at 
grid points vary spatially or with time, the velocity at a point midway between two grid points 
will be the average of the velocities at the two grid points. This means the turbulence intensity at 
a point in space is a function of the distance between that point and any surrounding grid points. 
For example, if one does not place a grid point at the center of the rotor (i.e., at the hub), a 6x6 
grid measuring 50 m on each side will have a turbulence intensity at the hub that is 
approximately 1-2 percentage points lower than the values at the central grid points. This effect 
becomes more pronounced as the distance between grid points increases or as the rotor diameter 
increases for a fixed number of grid points. For this reason, it may be important to use more grid 
points for larger rotors. 

 
Figure 28. Coordinate system used for wind 
input files 

Possible Improvements 
One improvement that will be added to the AeroDyn code in the near future is a stall delay 
model, which more accurately models three-dimensional rotational augmentation effects, 
particularly near the blade root. There are several candidates for appropriate modeling of this 
effect, including the one developed by Du and Selig (1998) and the one created by Eggers et al. 
(2000). Validation with measured data taken in the NASA Ames wind tunnel experiment (Hand 
et al. 2001) will be used to determine the best model to implement in AeroDyn. Furthermore, all 
of the various routines in AeroDyn will be validated and future improvements will be directed on 
the basis of these results. 
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