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The FEAM mooring module in FAST v8 calculate the mooring line restoring force at the 

fairlead position of the floating platform considering the inertia and drag forces at each line 

element. In FEAM module, the elastic rod model is used for modeling the mooring system.  

This model is ideal for small strain, large displacement structural analysis of slender members 

such as tether and catenary mooring lines. A single global coordinate system is used in the 

finite element formulation of the rod model. Therefore, the model is simpler and more efficient 

than other conventional nonlinear models, such as the updated Lagrangian beam model. 

Detailed theory and finite element modeling of the rod can be found in Nordgren (1974) and 

Garrette (1982). In FEAM module, the model was improved to include the stretch of the 

element under the axial tension. 

 

1. Theory of Rod 

This theory describes the behavior of slender rods in terms of the position of the centerline of 

the rod. As illustrated in Figure 1, a position vector ( , )s tr  is introduced to define the space 

curve, which is a function of arc length s  and time t . If we assume that the rod is inextensible, 

then the unit tangent vector to the space curve is r , and the principal normal vector is directed 

along r  and the bi-normal is directed along  r r  where the prime symbol represents the 

differentiation with respect to the arc length. 

 

 

Figure 1. Coordinate system for slender rod 



The equation of motion can be derived by equilibrium of the linear force and moment at the 

unit arc length of the rod as follows 

 

  F q r            (1) 

     M r F m 0           (2) 

 

where q  is the applied force per unit length,  is the mass per unit length of the rod, m is 

the applied moment per unit length. F and M  are the resultant force and moment along the 

centerline. The dot denotes the differentiation with respect to time. 

The resultant moment M  can be expressed as 

 

EI H     M r r r           (3) 

 

where EI  is the bending stiffness, H  is the torque. This relationship indicates that the 

bending moment is proportional to the curvature and is directed along the bi-normal direction. 

Substituting this relation into Equation (2), we have 

 

 EI H H            
r r F r r m 0

        (4) 

 

and the scalar product of the above equation with r  yields 

 

H    m r 0            (5) 

 

If we assume that there is no distributed torsional moment ( m r ), and the torque in the lines 

is negligible, then the Equation (4) can be re-written as 

 

 EI      
r r F 0

          (6) 

 

Introducing a scalar function ( , )s t , which is called the Lagrangian multiplier, the F in the 

above equation can be written as 



 EI    F r r           (7) 

 

The scalar product of Equation (7) with r  results in 

 

 EI      F r r r           (8) 

or 

2T EI              (9) 

 

where T  is the tension and the   is the curvature of the rod. 

Combining Equation (7) with (1), the equation of motion for the rod become 

 

   EI       r r q r          (10) 

 

In addition, r  should satisfy the inextensible condition as 

 

1  r r            (11) 

 

If the rod is extensible, and the stretch is linear and small, the above condition (11) can be 

approximated by 

 

 1
1

2

T

AE AE

    r r
          (12) 

 

The above equation of motion of the rod and inextensible (or extensible) condition with initial 

and boundary conditions and applied force vector q , are sufficient to determine the position 

vector ( , )s tr  and the Lagrangian multiplier ( , )s t . The applied force vector q , in most 

offshore applications, comes from the gravity of the rod and the hydrostatic and hydrodynamic 

forces from surrounding fluid. So it can be expressed as 

 

  s dq w F F            (13) 

 



where w is the weight of the rod per unit length, sF  is the hydrostatic force and dF  is the 

hydrodynamic force on the rod per unit length. The hydrostatic force can be written as 

 

 P  sF B r            (14) 

 

where B  is the buoyancy force on the rod per unit length, and P  is the hydrostatic pressure 

at point r  on the rod. If a cross section area of the mooring line is small, then the hydrostatic 

pressure P  can be neglected as programmed in FEAM module.    

The hydrodynamic force dF can be derived by Morison’s formula below 

 

 
    

n n n n n n
A M D

n
A

C C C

C

     

  

d

d

F r V V r V r

r F

  

        (15) 

 

where AC  is the added mass coefficient per unit length, MC is the inertial coefficient per unit 

length per unit normal acceleration and DC is the drag coefficient per unit length per unit 

normal velocity. 
nV  and 

nV  are fluid velocity and acceleration normal to the rod centerline 

respectively. They can be expressed as 

 

   n        V V r V r r r           (16) 

 n    V V V r r             (17) 

 

where V and V are the total fluid particle’s acceleration and velocity at the centerline of the 

rod without disturbance by the rod. nr  and nr are the rod acceleration and velocity normal 

to its centerline and can be obtained by 

 

 n    r r r r r             (18) 

 n    r r r r r             (19) 

 

The equation of motion of the rod subjected to its weight, hydrostatic and hydrodynamic forces 



in water, combining Equations (13) through (15) with (1) becomes 

    dn
a wC EI        r r r r w F  

        (20) 

where 

2T EI              (21) 

 w w B            (22) 

 

T  is the tension in the rod, w is the effective weight or the wet weight.  

The Equation (20) together with the line stretch condition in Equation (12), are the governing 

equations for the statics or dynamics of the rod in fluid. 

In the case of FEAM development, the bending stiffness EI is not included in the governing 

equations. In many cases, the bending stiffness does not make significant contributions to the 

platform responses if platform is moored with tensioned lines. 

 

 

2. Finite Element Model 

Since the governing equation is nonlinear, it is difficult to solve the equation by analytically. 

Therefore, the finite element method is used to transform the differential equations into a series 

of algebraic equations through an integral statement. For convenience, the governing equations 

(20) and (21) are written in subscript notation: 

    0n d
i a w i i i i ir C r EIr r w F                    (23) 

and  

 1
1 0

2 r rr r
AE

               (24) 

where the subscripts range from 1 to 2 for the 2 dimensional problem and from 1 to 3 for the 3 

dimensional problem. Repeating of the subscripts in the same equation means summation over 

the subscripts’ range.  

In the finite element method, the line is discretized into elements with finite length and the 

algebraic equations are developed in the element level. The unknown variable ( , )ir s t , ( , )s t  

can be approximated as:  

( , ) ( ) ( )i l ilr s t A s U t           (25) 

( , ) ( ) ( )m ms t P s t            (26) 



where, 0 s L  , ( )lA s  and ( )mP s  are interpolation functions, and ( )ilU t  and ( )m t  are 

the unknown coefficients. By introducing shape functions for the solution, the weak 

formulations for applying the finite element method technique are written by multiplying the 

weight function:  

   
0

0
L n d

i i a w i i i i ir r C r EIr r w F ds                       (27) 

 
0

1
1 0

2

L

r rr r ds
AE

                   (28) 

The following cubic shape functions for ( )lA s  and quadratic shape function for ( )mP s  are 

used for the basis of the relation of ( )i l ilr A U t   and m mP   such as equation (27) 

and (28): 

 

 

2 3
1

2 3
2

2 3
3

2 3
4

1 3 2

2

3 2

A

A L

A

A L

 

  

 

 

  

  

 

  

          (29) 

 
 

2 3
1

2

3

1 3 2

4 1

2 1

P

P

P

 
 

 

  

 

 

          (30) 

where 
s

L
   

1 2

3 4

(0, ),      (0, )

( , ),      ( , )

i i i i

i i i i

U r t U r t

U r L t U r L t

 

 
         (31) 

1 2 3(0, ),     ( , ),     ( , )
2

L
t t L t               (32) 

Thus, the equation (29) and (30) can be written as follows: 

   
0 0

L Ln n
i i a w i i a w i l ilr r C r ds r C r A U ds                  (33) 

   

 

0 0

0 0
0

                      

L L

i i i l il

L
LL

i l i l l i il

r EIr ds EIr A U ds

EIr A EIr A EIA rds U

 



  

        
 

 


      (34) 



   
 

0 0

00

                      

L L

i i i l il

L L

i l i l il

r r ds r A U ds

r A r A ds U

   

  

  

     
 

 



 

 
       (35) 

 
0 0

L Ld d
i i i i i l ilr w F ds w F A ds U                   (36) 

   
0 0

1 1
1 1

2 2

L L

r r m r r mr r ds P r r ds
AE AE

                           (37) 

If equations (33) to (36) are assembled and the term of ilU  is canceled out on both sides of 

the above equations, the following equation is obtained:  

    
 

0

0
0

                                 

L n d
l i a w i l i l l i i

L
L

i l i i l

A r C r EIA r r A A w F ds

EIr A r EIr A

  



      

       

   


      (38) 

The same procedures are applied for equation (37) and m  is removed from both side of the 

equation (37), and the final form of the equation (37) is:  

 
0

1
1 0

2

L

m r rP r r ds
AE

                 (39) 

Thus, the unknown quantities that need to be determined are the position vector and tangent 

vectors at the two end nodes of the elements and the scalar  . The   represents the line 

tension at the end nodes and the midpoint. By combining equations (19), (25) and (26) with 

(38) The equation of motion for the element can be written as follows:  

   1 2 0a
ijlk ijlk jk ijlk n nijlk jk ilM M U K K U F            (40) 

where 

0 0

L L

ijlk jk l i l k ij jkM U A rds A A dsU              (41) 

 
 

0

0 0
            

La n
ijlk jk l A i

L L

A l k ij l k s t it js ij jk

M U A C r ds

C A A ds A A A A U U ds U 



     



 

 


      (42) 

1

0 0

L L

ijlk jk l i l k ij jkK U EIA rds EIA A dsU              (43) 

2

0 0

L L

ijlk jk l i n n l k ij jkK U A rds P A A dsU               (44) 

 
0

L d
il i i lF w F A ds             (45) 



and ij  is the Kronecker Delta function. The resultant forces and moments are not included in 

this equation, since these forces and moments canceled with the neighboring element during 

the assembly of the element equation to satisfy the compatibility between two elements. ijlkM  

in equation (41) represents the mass term and 
a
ijlkM  in equation (42) represents the added mass. 

In equation (43) and (44), there are two stiffness terms. 
1
ijlkK  is the material stiffness that 

comes from the bending stiffness EI, and 
2
nijlkK  is the stiffness from tension and the curvature 

of the rod. For the two dimensional problem, i, j = 1, 2 and for the three dimensional problem, 

i, j = 1, 2, 3 and the subscript l, k, s, t = 1, 2, 3, 4. The equation (39) can be written as:  

0m mil kl ki m mn nG A U U B C              (46) 

where 

0 0

1 1

2 2

L L

mil jl jk m r r m l k jl jkA U U P r r ds P A A dsU U             (47) 

0

1

2

L

m mB P ds             (48) 

0 0

1L L

mn m n m nC P ds P P ds
AE AE

            (49) 

From equations (40) and (46), each element has 12 second-order ordinary differential equations 

and 3 algebraic equations (3-dimentional problem). All these equations are nonlinear and the 

force vector, ilF , is also a nonlinear function of the unknowns because the wave force varies 

with the line position. In the next two sections, the numerical treatment for these nonlinear 

equations is discussed. 

 

2.1 Formulation of Static Problem 

In previous section, the equation of motion is derived and expended by finite element method. 

As mentioned in section 3.3, the numerical treatment of the nonlinear governing equation is 

discussed in this section and the next section. To analyze the dynamic problem, first the static 

equilibriums should be obtained. Therefore, in this section, the static problem is discussed. If 

the inertia term in equation (40) is removed, then the governing equation becomes the static 

equilibrium equation and it also becomes a nonlinear algebraic equation:   

0ilR              (50) 

0mG              (51) 



where, 

 1 2
il ijlk n nijlk jk ilR K K U F            (52) 

and ilF  is a static forcing term from the gravity force, drag force from the steady current and 

other applied static forces on the line. To solve the nonlinear equations, the Newton-Raphson’s 

iterative method is used. Using the Taylor series expansion, the equation (50) and (51) can be 

expressed as follow: 

   ( 1) ( )n n il il
il il jk n

jk n

R R
R R U

U



  

    
 

        (53) 

   ( 1) ( )n n m m
m m jk n

jk n

G G
G G U

U



  

    
 

        (54) 

where  

1 2il
ijlk n nijlk

jk

R
K K

U


 


          (55) 

2il
nijlk

n

R
K







           (56) 

2m
mkl jk

jk

G
A U

U





          (57) 

m
mn

n

G
C




 


           (58) 

and re-arrange the terms, 

   1 2 2 ( )n
ijlk n nijlk jk nijlk jl n ilK K U K U R              (59) 

    ( )2 n
mkl jl jk mn n mA U U C G              (60) 

from equation (59) and (60), the equation can be expressed by matrix form as follows: 

0( ) 1( ) ( )
ln

0( ) 1( ) ( )

t n t n n
jkijlk i il

t n t n n
nmjk mn m

UK K R

D D G
     

            
        (61) 

where, 

0( ) 1 ( ) 2t n n
ijlk ijlk n nijlkK K K            (62) 

 1( ) 2 ( ) ( )
ln 0

Lt n n n
i nijlk jk n l k jkK K U P A A ds U            (63) 

 0( ) ( ) ( )

0

Lt n n n
mjk mkp jp m k p jpD A U P A A ds U            (64) 



1( )

0

1 Lt n
mn mn m nD C P P ds

AE
              (65) 

 ( ) 1 2 ( )n n
il ijlk n nijlk jK ilR K K U F            (66) 

( ) ( ) ( ) ( ) 0n n n n
m mil kl ki m mn nG A U U B C             (67) 

After renumbering, the equation (25) can be written in the form: 

 ( ) ( )n n K y F            (68) 

where jkU  and n  form the vector y  

 11 12 21 22 31 32 1 2 13 14 23 24 33 34 3
T U U U U U U U U U U U U  y     (69) 

the force vector is as follows:  

 11 12 21 22 31 32 1 2 13 14 23 24 33 34 3
T R R R R R R G G R R R R R R G              F     

(70) 

and K  represents stiffness matrix  

( 1) ( )n n   y y y           (71) 

In every iterative step, the stiffness and the force vector are recalculated to solve for y . 

Because one element has 15 algebraic equation, the band width of the stiffness matrix is 15, 

and total number of equations for one rod is (N 1) 8 1   , where N is number of elements in 

a rod. From right hand side of the equation (38), the force vector can be written as: 
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where the superscript [1] represents the first end of the element (s = 0) and [2] represents the 

second end (s = L).  T

1 2 3N N , N , N  represents the nodal resultant force and 

 T

1 2 3L L , L , L  represents the nodal resultant moment ( ) M M L r . Therefore, after 

solving the variables U and   (at iteration n+1), the resultant force at the end nodes of an 

element can be obtained from force vector rF   

( 1)r n F F            (73) 

 

2.2 Formulation for Dynamic Problem – Time Domain Integration 

The dynamic equation of motion (40), and the stretch condition (46) can be rearrange as follows:  

 1 2
ijlk jk ijlk n nijlk jk il ilM U K K U F F    
 

        (74) 

0m mil kl ki m mn nG A U U B C              (75) 

where, 

a
ijlk ijlk ijlkM M M 


          (76) 



1 2
il il il ilF F F F   


          (77) 

1 1
il ijlk jkF K U            (78) 

2 2
il n nijlk jkF K U            (79) 

The equation (76) is a second order differential equation and (75) is algebraic equation with no 

time derivatives of the variables. To establish the time integration numerical scheme, equation 

(76) is split into two first order differential equations: 

ijlk jk ilM V F
 

            (80) 

jk jkU V            (81) 

Integrating the above two equations from time t(n) (at nth time step) to t(n+1) (at n+1th time step) 

the equation can be written as: 

( 1) ( 1)

( ) ( )
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( 1) ( 1)

( ) ( )

t n t n

jk jkt n t n
U dt V dt

 
            (83) 

Because ijlkM


 includes the added mass, the mass term is not constant, and it varies with line 

position, which means it is a function of time. By approximating the time varying ijlkM


 in 

time interval (n 1) (n)t(t t )   to be a constant 
1

2
(n )

ijlkM


, which is the mass at 
(n) t

t
2


 , then the 

integration in equation (82) can be simplified as follows with second order accuracy as:  
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The 
(n 1)
jkV 

 of the equation (83) can be obtained as follows using trapezoidal methods: 
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Re-arranging equation (84) and (85), the equation becomes: 
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where  
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and the integral term in equation (84) can be written as: 
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For the first and second terms at the right hand side, applying trapezoidal rules, then  
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    (91) 

where 
1 1

2 2
(n ) (n )

n n n

     . The third term in equation (89) includes the applied force ilF  

which is from gravity and hydrodynamic forces. The gravity force is independent of time, but 

the hydrodynamic force form Morison equation is unknown at time step (n+1) since the force 

is function of the unknown rod position and velocity. Therefore, the Adams-Bashforth explicit 

scheme is used for the integration: 
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Using the above equations, the time integration equation (84) can be obtained as follows: 
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Using Adams-Bashforth method can approximate the time varying mass: 
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For the stretch condition (equation (75)), the time marching can be obtained by Taylor 

expansion 
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Using equation (94) and (95), the equation of motion and the stretch condition can be re-written 

as follows: 
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The resultant forms of the equation (96) and (97) are similar to the static problem. The equation 

of motion in matrix form can be written as follows: 

 ( ) ( )n n K y F
 

   at time step n       (104) 

( 1)r n F F


           (105) 

Using Adams-Moulton with Adams-Bashforth scheme, the numerical methods in this study, 

mixed implicit and explicit scheme is used to avoid iterative methods in time domain problem. 

 

2.3 Modeling of the Seafloor 

For the catenary mooring system, a portion of a mooring line near the anchor usually lies on 

the seabed. The interaction between steel catenary riser and the seafloor is also very important 

in the riser design. Due to this reason, the interaction between mooring line (or riser) and 

seafloor is modeled. In the numerical modeling, the horizontal friction between line and 

seafloor are neglected. However, in vertical direction, the seafloor is modeled as elastic 



foundation, and the dynamic bottom boundary conditions are shown in following equations: 
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      (106) 

where D represents the water depth or vertical distance between the seafloor and the origin of 

the coordinate, and 3r  is the z-component of the line position vector. Include seafloor 

interaction, the equation of motion is re-written as follows: 
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and, 
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  (Kronecker Delta)      (109) 

In the static analysis, the stiffness matrix is modified as follows: 
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The additional stiffness 
3
ijlkK  from seafloor is added to 

t0
ijlkK . In the time domain analysis 

using the trapezoidal rule, the stiffness matrix modified as follows: 
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The equation of motion includes seafloor effects finally written as follows: 
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3. Input Data 

The FEAM mooring module input file contains the information about mooring system (element 

definition, material property, platform-mooring coupling, and mooring line boundary 

conditions) 

 

The input data are dimensional and standard unit systems are used (meters, kg, Newton and 

second for SI system).  

 

In the FEAM input file, the x and y axis define a horizontal plane and z axis is positive upward. 

The origins of the global coordinate systems are located on the mean water surface with the 

corresponding axis parallel to each other. All the information related to the mooring system is 

defined with respect to the global coordinate system. In the following sections, all the input 

and output data are given in global coordinate except those specified otherwise. 

 

The input data can be divided into two groups. The first group of data contains general 

information needed in the program and is listed as follows 

 

DT: Communication interval for controllers 

NumLines: The total number of mooring lines 

NumElem: The total number of elements per line. All elements are equal in length. 

Gravity: Gravitational acceleration  

WtrDens: Water density 

MaxIter: The maximum number of iterations for finding static equilibrium position of lines. 

In most cases, 100 is enough. 

Eps: Static iteration tolerance.  

 

The second group of data contains all the properties of mooring lines including material 



properties, geometry, boundary conditions. This group of data should be prepared for every 

line. In other words, one should repeat this group of input data for NumLines times, where 

NumLines is the total number of lines as defined in group one. 

 

LEAStiff: The axial stiffness (Young’s modulus cross sectional area of the line) in [N] 

LMassDen: The mass per unit length of the element in [kg/m] 

LDMassDen: The displaced mass per unit length if the element is in water (LDMassDen =0 if 

the element is in air) in [kg/m] 

LineCI: The coefficient of inertial force in [kg/m], i.e., the inertia force per unit length at unit 

acceleration.  

LineCD: The coefficient of drag force in [kg/m2], i.e., the drag force per unit length at unit 

relative velocity squared. 

LUnstrLen: The unstretched line length in [m] 

BottmStiff: The stiffness coefficient of the foundation. In the program, the elastic foundation 

is modeled as a continuous quadratic spring foundation to support the lines, i.e. the relation 

between the vertical support force F and the vertical deformation dz is F=BottmStiff ⅹ dz2 in 

[N/m2] 

LRadAnch: The anchor point radius in [m] 

LAngAnch: The anchor point angle in [deg] 

LDpthAnch: The anchor point depth in [m] 

LRadFair: The fairlead point radius in [m] 

LAngFair: The fairlead point angle in [deg] 

LDrftFair: The fairlead point draft in [m] 

Tension: The pretension at the fairlead point. This input affects axial deformation of the 

element in the analysis. For example, in a TLP analysis, if the stretch of the tether caused by 

the net buoyancy force is already included in the initial element length (LUnstrLen), one needs 

to set the ‘Tension’ as the actual static pretension so that any axial deformation in the 

calculation is caused only by dynamic tension 

XSpringStiff, YSpringStiff, ZSpringStiff: The linear spring stiffness between mooring line 

top and platform fairlead along x, y and z direction respectively in [N/m]. The user can vary 

the stiffness to simulate different types of connections. It is recommended that the values of 

stiffness should be about 100~1,000 times higher than the axial (stretch) stiffness (LEAStiff) 



of the lines. 

 

OutList: Currently, FEAM can produce the tensions at fairlead and anchor position. The output 

channels are listed below. The maximum number of lines are not limited in the computation, 

but the maximum number of output lines are set to 10. 

 

Table 1. FEAM output channels 
Name Description 

FairT1 Fairlead tension of line #1 [kN] 
FairT2 Fairlead tension of line #2 [kN] 
… … 
FairT10 Fairlead tension of line #10 [kN] 
AnchT1 Anchor tension of line #1 [kN] 
AnchT2 Anchor tension of line #2 [kN] 
… … 
AnchT10 Anchor tension of line #10 [kN] 

 

 

4. Subroutines and internal variables 

The subroutines inside the FEAM module are explained in this section. 

 

FEAM_Init: In this subroutine, the input file data are loaded and initial line stiffness matrix is 

made. Then it calls ‘FEAM_Solve’ to find the static equilibrium of line position. 

 

FEAM_UpdateStates: This subroutine updates the states variables by calling ‘FEAM_Solve’. 

Since p%DYN = true in this subroutine, ‘FEAM_Solve’ compute the dynamic equation of 

motion of lines. The current fairlead positions in global coordinate system are fed into 

‘FEAM_Solve’. In addition, this subroutine saves the current position of fairlead into 

‘OtherState%FAST_FPA’ in order to use numerical integration of the next time step. 

 

FEAM_CalcOutput: This subroutine calculates outputs. The outputs in this subroutine are 

listed below. 

 

 

 



Table 2. Output variables in FEAM_CalcOutput 
Name Description Index 

OtherState%FAIR_T(LEG) Fairlead tension [N] 
LEG : Line number 

OtherState%ANCH_T(LEG) Anchor tension [N] 

OtherState%FAIR_ANG(LEG,I) 
Unit tangent vector 
component of fairlead 
angle LEG : Line number 

I : Direction (x,y,z) 
OtherState%ANCH_ANG(LEG,I) 

Unit tangent vector 
component of anchor 
angle 

OtherState%Line_Coordinate(LEG,I,J) Line element coordinate 
LEG : Line number 
I : Node number 
J : Direction (x,y,z) 

OtherState%Line_Tangent(LEG,I,J) 
Line element tangent 
vector at nodes 

OtherState%F_Lines(LEG,J) 
Mooring restoring force 
[N] 

 

 

FEAM_Solve: If DYN = false, this subroutine calculate the initial static configuration of lines. 

Otherwise, it solves the dynamic equation of motion of lines. 

 

Element: This subroutine fills out the mass, stiffness and force matrix of one line element. The 

forces acting on the element include gravity, seabed quadratic spring and hydrodynamic force 

from Morison equation. The hydrodynamic force on one line element of length ‘p%Elength’ 

should be inserted into ‘OtherState%FORCE’. The details of key variables are tabulated below. 

 

Table 3. Key variables in ‘Element’ subroutine 
Name Description Remark

OtherState%U(1,1) X Coordinate of 1st end  

OtherState%U(2,1) Y Coordinate of 1st end  

OtherState%U(3,1) Z Coordinate of 1st end  

OtherState%U(1,3) X Coordinate of 2nd end  

OtherState%U(2,3) Y Coordinate of 2nd end  

OtherState%U(3,3) Z Coordinate of 2nd end  

OtherState%U(1,2) X component of direction cosine of 1st end  

OtherState%U(2,2) Y component of direction cosine of 1st end  

OtherState%U(3,2) Z component of direction cosine of 1st end  

OtherState%U(1,4) X component of direction cosine of 2nd end  

OtherState%U(2,4) Y component of direction cosine of 2nd end  

OtherState%U(3,4) Z component of direction cosine of 2nd end  
 



All the above coordinates and forces should be written with respect to the global coordinate 

system at current simulation time ‘t’. The ‘u%HydroForceLineMesh’ variable contains the 

information of the line coordinate inside ‘position’ 

 

Couple: This subroutine calculates the spring connector force and stiffness coefficients 

between line ends and platform. The right hand side ‘RHSR’ should be calculated based on 

both the previous fairlead position and the current fairlead position for numerical integrations. 

This is why ‘FEAM_Solve’ always calls ‘Couple’ subroutine twice. 

 

Solve: This is a generic subroutine for solving systems of equations using Gauss elimination. 

 

 

5. Example 

In this section, OC3-Hywind spar mooring lines are modeled using FEAMooing module.  

 

---------------------- FAST MOORING FILE -------------------------------------- 

NREL 5.0 MW offshore baseline floating platform input properties for the OC3-Hywind spar-buoy. 

---------------------- SIMULATION CONTROL -------------------------------------- 

False          Echo         - Echo input data to <RootName>.ech (flag) 

      0.0125   DT           - Communication interval for controllers (s) 

      3       NumLines   - Number of lines 

     20      NumElem   - Total number of elements per line 

      9.81    Gravity       - Gravitational acceleration (m/s^2) 

   1025.0     WtrDens       - Water density (kg/m^3) 

    100       MaxIter       - Maximum number of static iterations 

    1e-4      Eps           - Static iteration tolerance 

---------------------- MOORING LINES 1 ------------------------------------------- 

  384.243E6    LEAStiff      - Axial stiffness 

   77.7        LMassDen      - Mass per unit length of the element 

    6.47        LDMassDen     - Displaced mass per unit length of the element 

    6.47       LineCI        - The inertia force per unit length / unit accel. 

   46.13       LineCD        - The draf force per unit length / unit relative vel. 

  902.2        LUnstrLen     - Unstretched length 

    1.0E4      BottmStiff    - Seabed stiffness  

  855.574       LRadAnch 

    0.0         LAngAnch 

  320.0         LDpthAnch 

    4.7         LRadFair 

    0.0         LAngFair 

   70.0         LDrftFair 

    9.7E5       Tension       - Initial top tension 



    1.0E10      XSpringStiff  - The linear spring stiffness in x-direction between mooring & platform 

    1.0E10      YSpringStiff  - The linear spring stiffness in y-direction between mooring & platform 

    1.0E10      ZSpringStiff  - The linear spring stiffness in z-direction between mooring & platform 

---------------------- MOORING LINES 2 ------------------------------------------- 

384.243E6    LEAStiff      - Axial stiffness 

   77.7        LMassDen      - Mass per unit length of the element 

    6.47        LDMassDen     - Displaced mass per unit length of the element 

    6.47       LineCI        - The inertia force per unit length / unit accel. 

   46.13       LineCD        - The draf force per unit length / unit relative vel. 

  902.2        LUnstrLen     - Unstretched length 

    1.0E4      BottmStiff    - Seabed stiffness  

  855.574       LRadAnch 

  120.0         LAngAnch 

  320.0         LDpthAnch 

    4.7         LRadFair 

  120.0         LAngFair 

   70.0         LDrftFair 

    9.7E5       Tension       - Initial top tension 

    1.0E10      XSpringStiff  - The linear spring stiffness in x-direction between mooring & platform 

    1.0E10      YSpringStiff  - The linear spring stiffness in y-direction between mooring & platform 

    1.0E10      ZSpringStiff  - The linear spring stiffness in z-direction between mooring & platform 

---------------------- MOORING LINES 3 ------------------------------------------- 

384.243E6    LEAStiff      - Axial stiffness 

   77.7        LMassDen      - Mass per unit length of the element 

    6.47        LDMassDen     - Displaced mass per unit length of the element 

    6.47       LineCI        - The inertia force per unit length / unit accel. 

   46.13       LineCD        - The draf force per unit length / unit relative vel. 

  902.2        LUnstrLen     - Unstretched length 

    1.0E4      BottmStiff    - Seabed stiffness  

  855.574       LRadAnch 

  240.0         LAngAnch 

  320.0         LDpthAnch 

    4.7         LRadFair 

  240.0         LAngFair 

   70.0         LDrftFair 

    9.7E5       Tension       - Initial top tension 

    1.0E10      XSpringStiff  - The linear spring stiffness in x-direction between mooring & platform 

    1.0E10      YSpringStiff  - The linear spring stiffness in y-direction between mooring & platform 

    1.0E10      ZSpringStiff  - The linear spring stiffness in z-direction between mooring & platform 

---------------------- OUTPUT -------------------------------------------------- 

True           SumPrint     - Print summary data to <RootName>.sum (flag) (currently unused) 

          1    OutFile 

True           TabDelim 

"ES10.3E2"     OutFmt 

          5    TStart 

               OutList 

END of input file (the word "END" must appear in the first 3 columns of this last OutList line) 

--------------------------------------------------------------------------------------- 

 



In this example, three mooring lines are modeled. The angle between each line is 120 degrees, 

and the radius of anchor position is 855.574m. The initial pretensions of the mooring lines are 

set to 9.7e5N per line and its direction is tangent to the end of the line element. The pretensions 

are used to find the initial equilibrium position of floating platform. If this pretension is too 

small, the initial equilibrium position will be greater than MWL for example. The linear spring 

stiffness between mooring line end and fairlead is 1.0e10 N/m for all x, y and z direction. 

 

Figure 2. OC3-Hywind mooring lines 

 

During the dynamic simulation, the hydrodynamic loadings on the line elements are calculated 

at each time step. In the FEAM module, the wave kinematics at line nodes come from the initial 

line position not from the current line position. However, this does not make significant error 

because the wave kinematics at different position make a negligible effect on the mooring line 

dynamics. 

 

 

6. Verification test 

To verify the FEAM module in new FAST framework, free-decay test of OC3-Hywind spar 

platform was conducted and compared with the result from the FAST-CHARM3D simulation. 

The FAST-CHARM3D program was developed by TAMU based on the external coupling of 

the two programs, FASTv7 and CHARM3D. It is a totally independently developed program 
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and has been verified extensively in various case studies. The FASTv8+FEAM is the newly 

developed program in this project for equivalent capability while conforming to the new frame 

of FASTv8 modular structure. 

 

To eliminate the inconsistent conditions between FAST-CHARM3D and FAST-FEAM, below 

constraints are applied 

- Aerodynamics is not included. (CompAero = False) 

- WaveMod is set to 0, which means the test is conducted in a still water condition. 

- Hull viscous drag (Cd = 0.6) is not included. 

- Rotor does not rotate. 

 

Initial offset position of the surge is set to 4m and released. The surge displacement and 

mooring line tensions are plotted and compared in this section. 

 

 

Figure 3. Surge free decay test 

 

As can be seen in Fig. 3, the time series of the surge displacement shows very good agreement 

between FAST-CHARM3D and FAST-FEAM. Minor differences which can be seen in the 

figure come from the slightly different hydrodynamic module and different platform initial 

offset. (FAST-CHARM3D applies force or moment to move the platform to the initial position 

of the free decay test. For this reason, FAST-CHARM3D needs to apply surge force, heave 

force and pitch moment for fair comparison with FAST-FEAM) 
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Figure 4. Heave response during surge free decay test 

 

 
Figure 5. Pitch response during surge free decay test 

 

Figs. 4~5 show the platform heave and pitch responses during the surge free decay test. Those 

responses also show very good agreement between FAST-CHARM3D and FAST-FEAM. 

Minor differences in the transient stage of the pitch are due to the slight different initial position 

of the pitch. The excellent agreement of the natural periods also confirms that the mooring 

stiffness is modeled correctly. 
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Figure 6. Top tension of the mooring line #1 

 

Similarly, the mooring line top tensions are also compared in Figs. 6~8. The top tensions also 

show good agreement. The minor differences come from the small different initial conditions 

between FAST-CHARM3D and FAST-FEAM and the difference ratio is less than 0.4%. 

 

 

Figure 7. Top tension of the mooring line #2 
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Figure 8. Top tension of the mooring line #3 
 

In the FEAM module, the mooring-line dynamics calculated by Morison’s equation are 

included with proper inertial coefficient (CI) and drag coefficient (CD). The current mooring 

line module inside the FAST (MAP module or ‘Catenary’ subroutine) cannot consider the effect 

of the hydrodynamic loading on the lines. To see the effect of the hydrodynamic loadings on 

the lines, two cases (with CD and CI, without CD and CI) are simulated using newly developed 

FEAM module. The difference can be considered as mooring damping. 

 

Figure 9. The effect of the mooring dynamics on the platform surge 
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As can be seen in Fig.9, the natural frequency of the platform does not change, but the decaying 

ratio changes due to the damping from the mooring line drag. In deep water, this effect could 

be significant, so should be included in the computation. 

 

Other than the free decay test, regular wave test was also conducted. All the conditions are 

same as the free decay test without any initial platform offsets. The incident-wave period is set 

to 10s, and the wave height is 6m.  

 

 

Figure 10. Platform surge with regular wave 
 

 

Figure 11. Platform heave with regular wave 
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Figure 12. Platform pitch with regular wave 
 

Figs. 10~12 represent the surge, heave and pitch responses of the platform with a regular wave. 

Except for the slight difference in initial transient heave, all the responses show good agreement. 

 

 

Figure 13. Top tension of the mooring line #1 with regular wave 
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Figure 14. Top tension of the mooring line #2 with regular wave 
 

 

 

Figure 15. Top tension of the mooring line #3 with regular wave 
 

 In the case of the line tensions in Figs.13~15, the time histories show very good agreement 

between FAST-CHARM3D and FAST-FEAM, which means that all the line dynamics are 

correctly simulated in the two independent programs. The detail data is additionally attached 

as an Excel spreadsheet. 
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7. Conclusion 

In this report, the theory of the rod and its finite element model were explained. As a FEAM 

submodule for the FAST v8, the development work has been done based on the rod theory. The 

input file format of FEAM module was explained in this report and one example file for OC3-

Hywind spar platform was provided. The hydrodynamic loadings on the line element were 

calculated based on the wave kinematics of the initial position of the mooring lines. The inertia 

and drag forces of the line elements were computed at every time step and included in the 

simulation. Free decay test using OC3-Hywind spar platform has been conducted and 

compared with the result from the independently developed FASTv7-CHARM3D, the FE 

mooring code incorporated with the FASTv7. The comparison data including platform motion 

and mooring line tension showed good agreement. The effect of the inertia and drag forces of 

the line element was also checked and presented. This effect should be considered for the 

analysis of the deep-water moored platform dynamics. In addition to the free decay test, regular 

wave test was also conducted. It was confirmed that the platform motions and mooring line 

tensions using FEAM module were very reliable with incident wave environment. 

The newly developed FEAM module can analyze any kinds of mooring lines including 

catenary mooring, taut mooring, vertical tendons, etc. provided that the proper line geometry 

and properties are made. 


