

Systems engineering in wind energy at DNV

Some thoughts on the approach to wind turbine design, choice, and deployment

David Malcolm 14 December 2010

Overview

 One of the largest wind energy consulting and certification companies in the world

- ~200 employees dedicated to wind

 Many others technical specialists contributing to wind projects from other business units

- Wind energy competence in offices in the Americas, Europe, and Asia

Wind energy expertise around the world

DNV Services to the Wind Industry

Advisory Services

- Wind Resource Assessment
- Project Development Support
- Due Diligence
- Marine Advisory Services
- Asset Risk Management
- Health, Safety, and Environmental Risk Management
- Wind Turbine Technology
- Training and educational programs

Accredited Services

- Project Certification
- Type Certification
- Accredited Testing Services
 - Power Performance Testing

Loads Testing

The holistic approach

- Some subjects / disciplines
 - Basic research
 - Resource assessment
 - Design and component testing
 - Quality assurance
 - Code development
 - Certification
 - Field loads measurements
 - Field health / condition monitoring
 - Client needs, COE
 - Utility needs reliability, power quality, control
 - Operations & maintenance
 - Onshore / offshore applications
 - Transmission
 - Health and safety

- As an industry matures, different groups and subject areas can become isolated.
- Communication between the groups and disciplines is essential.
- Analogies with the aviation industry.
 - Continuous monitoring enables immediate diagnostics – a spare part available at the next landing. FAA and similar agencies have access to data.
- Emphasis on
 - Condition monitoring & evaluation
 - Diagnostic tools
 - Feedback to manufacturer
 - Feedback to operator
 - Feedback to inform a systems engineering tool

Some relationships

Example:

- If a blade breaks, the response needs to have information about the loading history, the maintenance log, the site conditions, data on similar blades, the manufacturing quality, etc.
- While this information need not be public, it must be collected and may be important to inform a systems engineering tool.

Good information and tools leads to better choices

- Good information is required for a client to choose the most appropriate turbine, or a manufacture to optimize a turbine configuration or product line,
- Tools to facilitate this process will help the industry.
- Separate tools are needed for onshore and offshore applications.

Safeguarding life, property and the environment

www.dnv.com

DNV in the wind energy market

- 25 years in the wind industry
- 2nd largest wind technical advisory company in the world
- Global presence: long established in Europe and North America; expanding operations in Asia and South America
- Services address the whole value chain -from early phase wind energy assessment and project risk to asset risk management and marine operations.
- Leading certification agency in the industry
 - Market leader in project certification for offshore wind
 - Type certification for largest turbine manufacturers in the world
- Comprehensive engagement DNV has played a role in the majority of the world's offshore wind projects and more than 75% of North America's onshore projects.
- DNV develops international rules and standards for the wind industry

Examples of Services Across the Entire Life Cycle

Offshore wind – three short facts

