SIEMENS

SWT-3.0-101 An example of Systems Engineering

Andy Paliszewski Siemens Energy Inc. Director Wind R&D Boulder, CO

v 0.8

Siemens Energy Sector: Systems Engineering from primary energy to power distribution

A Systems Engineering Approach - Providing Solutions in all phases of a wind power plant project

Planning

- Siting guidance
- Financing packages
- Insurance packages
- Network evaluation

Construction

- Product delivery
- Project managemen
- Installation
- Commissioning
- Turnkey experience
- Local presence around the globe

Service and Expansion

- Inspections
- Maintenance programs
- Modernizations
- Extensions
- Repairs
- Spare parts
- Training
- Global service network

Operation

- Operation & maintenance agreements
- Monitoring
- Diagnostics

Siemens SWT-3.0-101: high customer value minimizing the cost of energy

Summary: SWT-3.0-101

- Simple design with less moving parts reduces complexity and need for maintenance
- The compact and light weight design is major advantage for transportation and installation
- The proven 101 m rotor features high performance aerodynamics at reduced loads

- Description & Application
- 2 Performance
- 3 Siemens direct drive technology
- 4 Blade design

SWT-3.0-101: Direct drive turbine with 101 m rotor

1

Description & Application

Technical data

IEC class:

Nominal power: 3,000 kW

Rotor diameter: 101 m

Blade length: 49 m

Swept area: 8,000 m²

Hub height: Site specific

Annual output at 8 m/s: 11,600 MWh

Rotor weight: 60 t Nacelle weight: 73 t

Power regulation: Pitch regulation, variable speed

Prototype installed: 2009
Pilot series 2010
Serial production: 2011

- Description & Application
- 2 Performance
- 3 Siemens direct drive technology
- 4 Blade design

Direct drive train enhances the efficiency of the wind **SIEMENS** turbine

Performance: Power curve

- Description & Application
- 2 Performance
- 3 Siemens direct drive technology
- 4 Blade design

Streamlined and effective design with few and highly efficient components

3

Technology: Nacelle design

- Direct drive with permanent magnet generator
- Simplified nacelle design with 50% less components
- Passive liquid cooling system
- Service-friendly design
- Previous proven solutions for the remaining components (blades, hub, power conversion, etc.)

A wind turbine designed to minimize the cost of energy

3

Technology: Customer benefit

Technology advantages...

- Increased efficiency due to minimum losses in drive train, generator and cooling system
- Reduction in number of wearing parts due to the simplified drive train
- Compact (nacelle Ø = 4.2m) and light weight design (nacelle weight = 73 t)

... bring down the cost of energy

- Enhanced performance
- Reduced effort in maintenance
- Designed for lean transport and installation

Compact and light weight design, major advantage for transportation and installation

3 Technology: Transpiration & Installation

- Designed for standard transport limitations
- Only requires trucks and tools available in high numbers worldwide
- Nacelle transported in one piece to minimize expensive and risky on-site assembly of critical components

Product and service offering designed to optimize maintenance and reduce customer risk

3

Technology: Service

Product features optimize maintenance

Gear box removed to increase reliability and optimize maintainability

- Simplified spare parts handling with 50% less components
- Service conditions improved by easier accessibility

Service offerings reduce customer risk

- Worldwide network of highly trained Siemens service technicians to safely manage the new technology
- Safe Investment: Long term service program offered already from day one (incl. parts warranty)
- Advanced preventive maintenance

- Description & Application
- 2 Performance
- 3 Siemens direct drive technology
- 4 Blade design

A twist of revolution: 15% larger swept area with the same loads

4

Blade design: loads

- New aerodynamic profile redistributes loads in the B49 blade, reducing the cumulative bending moment
- The root section is more heavily loaded due to the use of special flatback airfoils, and a larger planform (more chord)
- The tip section is less heavily loaded due to reduced chord length

B45
B49

The new SWT-3.0-101 blade employs new "flatback" SIEMENS profile in root section

- Flat back airfoil 'opens up' the trailing edge
- Separation point moved further towards the trailing edge giving increased lift

Increasing capacity and U.S. content

Ft. Madison Plant Expansion

- Warehousing
- Manufacturing
- Machining, rough & fine finish, and painting
- Direct rail shipping
- ~500 employees/3 shifts
- Manufactures B45 & B49 Wind

IntergralBlade®

New Nacelle Plant in Hutchinson, KS

- Capacity of 1500 MW per year
- Creating more than 400 jobs
- Initially assemble the 2.3MW nacelle, moving to 3.0DD
- First nacelle this month!

Siemens Wind Power has a goal of 90% US dollar content by 2012

Page 17 December 2010 Siemens Energy Inc.

Thank you for your attention!

