

System Engineering

Flemming Rasmussen, Peter Hauge Madsen Wind Energy Division Risø DTU

Risø DTU

National Laboratory for Sustainable Energy

System Engineering

The SIMILAR Process

Figure 1. The Systems Engineering Process from A. T. Bahill and B. Gissing, Re-evaluating systems engineering concepts using systems thinking, *IEEE Transaction on Systems, Man and Cybernetics, Part C: Applications and Reviews*, **28** (4), 516-527, 1998.

Risø DTU mission: Quality – Relevance – Impact

Wind Energy Division - Risø DTU Technical University of Denmark

Wind turbine aerodynamics and aeroelasticity - optimisation

Aeroelastic codes and simulations

Aeroelastic codes for time simulations:

- FLEX4
- BLADED
- FAST
- HAWC2
- simulations in real time or faster

Engineering sub-models for simulation of:

- > yawed flow
- > dynamic stall
- > unsteady blade aerodynamics
- > unsteady inflow
- ➤ tip loss
- > tower shadow
- > wakes from neighboring turbines
- simulation of turbulent inflow
- > control

HAWC2 - Risø DTU's code for wind turbine load and response

- A tool for simulation of wind turbine load & response in time domain.
 - Normal onshore turbines; 3B, 2B, pitch control, (active) stall
 - Offshore turbines (monopiles, tripods, jackets)
 - Floating turbines (HYWIND concept for now, later... Sway, Poseidon).
- Based on a multibody formulation, which gives great flexibility

It is a knowledge platform!

- New research/models are continuously implemented and updated.
- Core is closed source. E.g. Structure, aerodynamics, hydrodynamics, solver...
- Submodels are open-source. E.g. water kinematics, standard controllers, generator models.

HAWC2: Numerical platform for time simulation studies of complex wind turbine loading.

DTU

Components in System Engineering at Risø

- HAWC2 aeroelastic optimisation
- HAWCStab2: combined aeroelastic and control design
- Airfoil optimisation (including noise)
- Blade design including structure, noise
- Topology optimisation of wind farms (Site specific design)
 In progress:
- (Integrated design of offshore support structure and turbine)
- (Turbine, wind farm and grid-interaction)

Analysis of various pre-swept geometries and wind conditions

- 5 sweep curve exponents combined with 24 tip offsets = 120 + 1 (ref.) blade variants
- Steady wind speeds (4..26 m/s, 1m/s steps)
- Turbulent wind speeds (4..26 m/s, 2m/s steps, 10 min series) same seed number, TI=0.18
- Total of 1573 simulations

Equivalent Loads (fatique)

Flapwise

Edgewise

Torsion

Risø DTU, Technical Univers

HAWCStab2 – Aeroservoelastic modal analysis Example: Swept blades

Risø DTU, Technical University of Denmark

Aeroelastic stability

DTU

Airfoil optimisation: AirfoilOpt - flow chart

- A direct multipoint and interdisciplinary design tool
- An optimization algorithm coupled with a general 2D flow solver: XFOIL (or EllipSys2D)
- B-spline formulation of the 2D airfoil shape
- A Simplex optimizer or other type of optimization algorithm
- Multiple angles of attack are analyzed
- Model of moment of inertia with shell thickness
- 3D tool with Cubic B-spline formulation of the 3D blade shape and rotor flow calculations

Airfoil design

- Several lessons have been learned from four airfoil series designed 1998 to 2007 (Risø-A1, Risø-P, Risø-B1 and Risø-C2):
 - 1. Roughness insensitivity is very important
 - 2. High aerodynamic efficiency is very important
 - 3. Structural stiffness is important
 - 4. High compatibility is important
 - 5. Low noise is important
 - 6. High lift is important for some concepts

Risø DTU, Technical University of Denmark

New development: Noise (TNO model)

Rotor design HAWTOPT: Possibilities

- The analysis part can contain:
 - Aerodynamic models (e.g. BEM)
 - Aeroelastic calculations (e.g. HAWC2)
 - Aeroelastic stability calculations (e.g. HAWCSTAB2)
 - Noise calculations (e.g. BPM-model)
 - Simple structural models (predicting mass, stiffness, tip deflection)
- The general part can contain:
 - Object functions:
 - CP, CT, power, thrust, Annual Energy Production (AEP), noise, fatigue loads etc.
 - Design variables:
 - Blade chord, twist, thickness distribution, tower height etc
 - Constraints:
 - Noise, CT, thrust, maximum chord, blade thickness, tip deflection, fatigue loads etc

Rotor design HAWTOPT: Program structure

Topfarm wind farm optimization approach - loads and power

- Fast and robust optimization scheme for placing of wind turbines for optimum (lowest) cost of energy
- Wake modeling using DWM (Dynamic Wake Meandering)
- Quick lookup and summation for lifetime fatigue loads in a database based on HAWC2 aeroelastic simulations

 Cost function including: Annual energy production and costs of: Turbines, Grid, Foundation and O&M

Combined wind and wave energy - Poseidon World's first floating combined wind and wave energy plant

- Primarily a wave energy platform
- Large dimensions makes it stable and suitable for wind turbines
- Has been operating for 4 months
- Comprehensive measurement campaign
- Modeling and simulation work is ongoing

Code to code validation of new modeling tool

Flap-camber coupling

Flap-camber coupling

Integrated Design: Wing tip is a propeller

