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INTRODUCTION 
The hydrodynamic module of FAST, called HydroDyn, includes the contribution of wave radiation forces. The free 
surface memory effects that are part of the wave radiation forces are modeled using a time convolution of the 
retardation function. Instead of using this method, one could fit a state-space model to the retardation function in 
order to compute the radiation forces. This new approach will enable both a loose and tight coupling of the 
hydrodynamic forces within the new FAST modularization framework. In particular, the tight coupling scheme has 
the capability to provide better numerical accuracy and stability of the model than the loose coupling scheme. In 
addition, it can enable the linearization of the complete aero-hydro-servo-elastic solution, including the wave-
radiation forces, which is useful for eigenanalysis and the development of new control algorithms for floating wind 
systems. Linearization of the convolution method is also possible if the convolution is implemented numerically in 
discrete time, but then the resulting linearized system must include a combination of continuous and discrete time 
states. See Jonkman (2013) for more information. 
SS_fitting is designed to provide a state-space model based on the WAMIT output files. These matrices will be 
required to use the new State-Space realization module of HydroDyn, in order to compute the radiation forces of a 
floating wind turbine. 

 

FIGURE 1: HYDRODYN MODULES INCLUDING THE NEW STATE-SPACE REALIZATION MODULE. 

LINEAR HYDRODYNAMIC THEORY  
The hydrodynamic forces applied to a free floating body can be described by the application of the second 
Newton’s Law, for each degree of freedom 𝑖, 

𝑀�̈� = 𝐹ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐹𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + 𝐹𝑊𝑎𝑣𝑒𝑠 1 

Where the 𝑀 is the body mass matrix of the floating body, 𝑞 the displacement vector and 𝐹 represent the 

different hydrodynamic forces acting on the body. These include the hydrostatic restitution forces, 𝐹ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐; 
added mass and damping from the radiation problem including free-surface memory effects, 𝐹𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 and 
excitation forces from incoming waves, 𝐹𝑤𝑎𝑣𝑒𝑠. 
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These forces described are due to the external pressure acting on the body. The hydrostatic term represents the 
restoring force due to gravity and buoyance. In the linear theory, under the assumption of small motion of the 
device and waves, this term is linear and proportional to the displacement of the body, simply given by: 

𝐹ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = −𝐶ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑞 + 𝛿𝑖3𝜌𝑉0𝑔 2 

Where −𝐶ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐  is the hydrostatic restitution matrix and 𝑞  is the body displacement. The second term 
represents the impulse force in the body undisturbed position, where 𝛿𝑖3 is the Dirac delta,  𝜌  is the water 
density, 𝑉0 is the submerged volume in the undisturbed position and 𝑔 is the acceleration of gravity.  The radiation 
forces arise from the change in momentum of the fluid due to the motion of the structure. Under the linear wave 
approximation the radiation force in an ideal fluid can be represented by: 

𝐹𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = −𝐴∞�̈� − � 𝐾 (𝑡 − 𝜏)�̇�(𝜏)𝛿𝜏
𝑡

0
 3 

The first term represents the added mass forces associated with the fluid displaced due to the acceleration of the 
device, in which 𝐴∞ is the constant positive infinite-frequency added mass matrix. The second term represents the 
fluid memory effects that incorporate the energy dissipation due to the radiated waves generated by the motion 
of the body. This term is represented by the time convolution of the body velocities and the radiation impulse-
response function, 𝐾(𝑡), also called the retardation or memory matrix. This is not a very efficient term to compute 
numerically, as it requires information from previous time steps, in theory from the start of the body motion. Most 
of the codes using this formulation truncate the integral in equation 4: 

𝐹𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = −𝐴∞�̈� − � 𝐾(𝑡 − 𝜏)�̇�𝛿𝜏
𝑡

𝑡−𝑡𝑚𝑒𝑚𝑜𝑟𝑦

 4 

Storing only a few seconds of ‘memory’ (tmemory), usually 60 s. The accuracy of this method depends on the 
amount of time stored (which increases the computational time), and the quality of the impulse-response function 
of the platform modeled.  

Substituting equations 2 and 3 in equation 1, we obtained the so called Cummins Equation (Cummins, 1962): 

(𝑀 + 𝐴∞)�̈� + � 𝐾(𝑡 − 𝜏)�̇�𝛿𝜏
𝑡

0
+ 𝐶ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑞 = 𝐹𝑤𝑎𝑣𝑒𝑠 5 

HydroDyn actually uses a slightly different version of 4, including the effects of drag forces to viscous effects, 

𝐹𝑖𝑣𝑖𝑠𝑐𝑜𝑢𝑠 and the mooring lines restitution, 𝐹𝑖
𝑚𝑜𝑜𝑟𝑖𝑛𝑔𝑠: 

(M + A∞)q̈ + � K(t − τ)q̇ δτ
t

0
+ Chydrostaticq − ρgV0δ33 = Fwaves + Fviscous + Fmoorings 6 

The term −𝜌𝑔𝑉0𝛿33 represents the buoyancy force at the platform undisturbed position, which is canceled by the 
gravity force acting on the platform and turbine. This equation is implemented in HydroDyn according to Figure 2. 

As seen in the figure, the coefficients A∞, K and Chydrostatic must be computed by a hydrodynamic 3D panel code, 
like WAMIT, which provide the frequency-dependent added mass and damping matrices, as well as the hydrostatic 
matrix and wave-excitation forces. 

As seen all the terms of equation 5 are easily numerically implemented, except the time convolution term. This is 
not a very efficient term to compute from the numeric point of view, and it also constrains the linearization of the 
wind turbine model. However, it has been proposed in the literature several approaches to fit a parametric model 
to the behavior of the memory function. This is highlighted in the next chapter. 
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FIGURE 2: SUMMARY OF THE CALCULATIONS FOR THE INTERFACE OF SUPPORT PLATFORM LOADS TO FAST AND ADAMS. (JONKMAN & 
BUHL, 2007) 

RADIATION FORCE AND FREQUENCY DEPENDENT PARAMETERS 
The convolution integral of the radiation force becomes in the frequency domain just the multiplication of the 
Fourier transform of the impulse response function 𝐾(𝑡) by the body velocity �̇� . The retardation function 𝐾(𝜔) 
may be decompose into real and imaginary parts: 

𝐾(𝜔) = 𝐵(𝜔) + 𝑗𝜔[𝐴(𝜔) − 𝐴∞] 7 

The coefficients 𝐴(𝜔) and 𝐴∞ represent the frequency-dependent added mass and the infinite-frequency added 
mass respectively. The term 𝐵(𝜔) represents the frequency-dependent damping matrix and 𝑗 the imaginary unit. As 
seen before, all these coefficients may be obtained from a hydrodynamic panel code.  

The relation between these parameters and the impulse-response function was derived by Ogilvie (Ogilvie, 1964) 
via a direction application of the Fourier transform under a sinusoidal regime: 

𝐴(𝜔) = 𝐴∞ −
1
𝜔
� 𝐾(𝑡) sin(𝜔𝑡) 𝑑𝑡
∞

0
 8 

𝐵(𝜔) = � 𝐾(𝑡) cos(𝜔𝑡) 𝑑𝑡
∞

0
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Where it follows that 𝐴(∞) = lim𝜔→∞ 𝐴(𝜔). Given the frequency-dependent damping matrix, it is possible to 
compute the impulse-response function using: 

𝐾(𝑡) = 2 𝜋� � 𝐵(𝜔) cos(𝜔𝑡) 𝑑𝜔
∞

0
 10 

The impulse-response function can be obtained either using 10 or the inverse Fourier transform of equation 7. 
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PARAMETRIC MODEL IDENTIFICATION OF THE CONVOLUTION INTEGRAL 
In order to compute more efficiently the free-surface memory effects, it is possible to fit a parametric model to 
approximate the convolution term in the Cummins equation. This can be done, assuming that the system is causal 
and time invariant, using a state-space model described by: 

𝜇 = � 𝐾(𝑡 − 𝜏)�̇�𝛿𝜏
𝑡

0
≅ ��̇�𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟�̇�

𝜇 = 𝐶𝑟𝑥𝑟
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This process involves the identification of the state-space system with matrices 𝐴𝑟 , 𝐵𝑟  and 𝐶𝑟 . One of the 
advantages is the Markovian propriety of the state-space models, which guarantees that any future state of the 
system depends only on the present value of the system states. In other words, no past information needs to be 
stored as in the case of the convolution method, as all the memory effect is contained in the state vector 𝑥𝑟 . 

Several methods have been proposed in the literature to perform this system identification, see for example 
(Jefferys, et al., 1984), (Jefferys & Goheen, 1992), (Yu & Falnes, 1995), (Yu & Falnes, 1998), (Holappa & Falzarano, 
1999), (Hjulstad, et al., 2004), (Kristansen & Egeland, 2003), (Kristiansen, et al., 2005), (Jordan & Beltran-Aguedo, 
2004), (McCabe, et al., 2005) and (Perez & Fossen, 2009). 

In order to obtain the state-space system represented by equation 11 it is necessary to compute the frequency-
dependent added mass and damping matrices using a numerical code, as seen before. The retardation function in 
the frequency domain is straightly forward compute using equation 7, and with the frequency-response it is 
possible to find the equivalent linear state-space model. This method is named Frequency-Domain Identification. 
However, using the inverse Fourier Transform of the retardation function or equation 10 directly, it is possible to 
find the impulse-response function of retardation function. Using this Time-Domain Identification, it is possible to 
find the state-space model with the equivalent impulse-response. These methods are summarized in Figure 3. 

 

FIGURE 3: SCHEME OF THE RADIATION FORCE CALCULATION USING FREQUENCY- OR TIME-DOMAIN IDENTIFICATION METHODS. 

Based on the literature, four different methods were implemented within the toolbox. The user can choose the 
one to used, defining it in the input file (see section User Manual). The different methods are described in the 
following sections. 

 

Numeric Code WAMIT 

𝐴(∞) A(𝜔) B(𝜔) 

K(𝜔) K(𝑡) IFFT 

Cosine 
Transf. 

Frequency-Domain 
System Identification 

Time-Domain System 
Identification 

State-Space 
Model 

Radiation Force 

Velocity 
 



6 
 

PROPRIETIES OF THE PARAMETRIC MODELS 
One can fit a parametric model (transfer function) with the appropriate order for each entry of the retardation 
matrix: 

𝐾�𝑖𝑗(𝑠,𝜃) =
𝑃(𝑠,𝜃)
𝑄(𝑠,𝜃) =

𝑝𝑚𝑠𝑚 + 𝑝𝑚−1𝑠𝑚−1 + ⋯+ 𝑝0
𝑠𝑛 + 𝑞𝑛−1𝑠𝑛−1 + ⋯+ 𝑞0

 (12) 

Where θ=[pm ,…, p0, qn−1, … , q0] is the vector with the different parameters of the numerator 𝑃(𝑠,𝜃) and 
denominator Q(𝑠,𝜃), 𝐾�𝑖𝑗  is an entry of the retardation matrix and s = jω. The parametric models fitted to the 
retardation function should fulfill certain proprieties known apriori. These were derived using the hydrodynamic 
proprieties of the radiation potential described in Perez & Fossen, 2008 and are summarized in Table 1 at the end 
of the section. 

LOW-FREQUENCY ASYMPTOTIC VALUE 
The low-frequency asymptotic value is given by: 

lim
𝜔→0

𝐾(𝜔) = 0 13 
This statement is based on the principle that any structure cannot radiate waves at zero-frequency. If the 
retardation function is approximated by equation 10, then the function has to have a zero at 𝜔 = 0. This means 
that the parameter 𝑝0 has to be zero. 

HIGH-FREQUENCY ASYMPTOTIC VALUE 
The high-frequency limit of the retardation function has to be 0: 

lim
𝜔→∞

𝐾(𝜔) = 0 14 
This is can be proved based in equation 7. The damping limit has to be zero as the structure cannot radiate waves 
with infinite frequency, and so the difference 𝐴𝑖𝑗(𝜔) − 𝐴∞ will tend to zero when 𝜔 → ∞ (see Falnes, 2002 for 
more details). 

To guarantee this propriety, the transfer function 𝐾(𝑗𝜔) has to be strictly proper, that is deg {𝑄(𝑠,𝜃)} >
deg {𝑃(𝑠,𝜃)}. This will guarantee that the denominator grows faster with 𝜔 than the numerator, and therefore the 
function will tend to 0 when the frequency tends to infinite. 

INITIAL TIME VALUE 
The impulse-response function of the retardation function must have initial value different from zero. This can be 
proven by equation 10: 

lim
𝑡→0

𝐾𝑖𝑗(𝑡) = lim
𝑡→0

2 𝜋� � 𝐵(𝜔) cos(𝜔𝑡) 𝑑𝜔
∞

0
= 2 𝜋� � 𝐵(𝜔)𝑑𝜔

∞

0
≠ 0 15 

Applying the Laplace transformation to equation 15: 

lim
𝑡→0

𝐾𝑖𝑗(𝑡) = lim
𝑠→∞

𝑠𝐾𝑖𝑗(𝑠) = lim
𝑠→∞

𝑠
𝑃(𝑠)
𝑄(𝑠) =

𝑝𝑚𝑠𝑚+1

𝑠𝑛
 16 

From the previous equation it is clear that in order to force the limit to be finite and different from 0, the relative 
order of the denominator and numerator must be one (𝑛 = 𝑚 + 1).  

Combining this requirement with the requirements of the first propriety describe, it is easy to conclude that the 
minimum order function is second order, with the following format: 
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𝐾�𝑖𝑗𝑚𝑖𝑛(𝑠) = 𝑝1𝑠
𝑠2+𝑞1𝑠+𝑞0

’ 17 

FINAL TIME VALUE 
The response of a stable system to an impulse should tend to zero when time tends to infinite. This propriety 
establishes the bounded-input bounded-output stability of the radiation system and it is given by the limit: 

lim
𝑡→∞

𝐾𝑖𝑗(𝑡) = lim
𝑡→∞

2 𝜋� � 𝐵(𝜔) cos(𝜔𝑡) 𝑑𝜔
∞

0
= 0 18 

Therefore the poles of the transfer function 𝐾𝑖𝑗(𝑠), zeros of the denominator 𝑄(𝑠), must have a negative real part. 

PASSIVITY 
Passivity describes the property of systems that can store and dissipate energy, but not create it. Considering a 
floating body without external forces or incident waves, the Cummins equation can be written as 

𝑀�̈�𝑖 + 𝐶𝑖𝑗
ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑞 = 𝐹𝑖𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 19 

The energy change of this system becomes 

𝐸(𝑇) − 𝐸(0) = � 𝐹𝑖𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛�̇�𝑖𝑑𝑡
𝑇

0
 20 

And therefore the convolution term of the radiation force as to be passive. An interested reader can consult (Perez 
& Fossen, 2008) and the references there mentioned for a more detailed derivation. 

For linear and time invariant systems passivity can be ensured if the retardation matrix is positive real define in the 
frequency domain: 

ℜ𝑒�𝐾�𝑖𝑖(𝑠,𝜃)� = ℜ𝑒 �
𝑃𝑖𝑖(𝑠,𝜃)
𝑄𝑖𝑖(𝑠,𝜃)� > 0 21 

 

TABLE 1: PROPRIETIES OF RETARDATION FUNCTIONS 

Propriety Implications Transfer function 

1. lim𝜔→0 𝐾(𝑗𝜔) = 0 There are zeros at s=0 𝑝0 = 0 

2. lim𝜔→∞ 𝐾(𝑗𝜔) = 0 Strictly proper deg {𝑄(𝑠,𝜃)} > deg {𝑃(𝑠,𝜃)} 

3. lim𝑡→0 𝐾(𝑡) ≠ 0 Relative Degree 1 deg{𝑄(𝑠,𝜃)} − deg{𝑃(𝑠,𝜃)} = 1 

4. lim𝑡→∞ 𝐾(𝑡) = 0 BIBO Stability ℜ𝑒{𝑄(𝑠,𝜃) = 0} < 0 

5. The mapping �̇� → 𝜇 is passive 𝐾(𝑗𝜔) is positive real 
ℜ𝑒�𝐾�𝑖𝑖(𝑠,𝜃)� = ℜ𝑒 �

𝑃𝑖𝑖(𝑠,𝜃)
𝑄𝑖𝑖(𝑠,𝜃)� > 0 
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QUALITY OF THE MODEL 
Assessing the quality of the model can be done in several ways. As described before, the frequency-domain model 
is evaluated using the frequency-response, while the time-domain models are evaluated by their impulse-
response. In order to evaluate these responses, the R2 value is computed using: 

𝑅2 = 1 −
∑ �𝐾𝑖𝑗−𝐾�𝑖𝑗�

2
𝑙

∑ �𝐾𝑖𝑗−𝐾�𝑖𝑗�
2

𝑙
 ,            0 ≤ 𝑅2 ≤ 1 22 

were 𝐾𝑖𝑗  represents the reference retardation function, 𝐾�𝑖𝑗  the parametric model and 𝐾�𝑖𝑗  is the mean value of the 
reference retardation function. The summations are performed across all frequencies (for frequency response) or 
time (for impulse response).This is a measure of the amount of variability of the function that is captured by the 
model. The closer to one, the better is the quality of the fit.  

FREQUENCY DOMAIN IDENTIFICATION METHODS 
Providing the frequency-response of the convolution integral, computed with equation 7, one can fit a parametric 
model (transfer function) with the appropriate order for each entry of the retardation matrix: 

𝐾�𝑖𝑗(𝑠,𝜃) =
𝑃(𝑠,𝜃)
𝑄(𝑠,𝜃) =

𝑝𝑚𝑠𝑚 + 𝑝𝑚−1𝑠𝑚−1 + ⋯+ 𝑝0
𝑠𝑛 + 𝑞𝑛−1𝑠𝑛−1 + ⋯+ 𝑞0

 

 
𝜃=[𝑝𝑚,…, 𝑝0, 𝑞𝑛−1, … , 𝑞0] 

 

23 

The determination of the approximated model 𝐾�𝑖𝑗(𝑠,𝜃) and 𝜃 poses an optimization problem following the Least 
Squares Method: 

𝜃 = arg min
𝜃
��𝐾𝑖𝑗(𝑠) − 𝐾�𝑖𝑗(𝑠,𝜃)�

2

𝑙

 24 

This problem is solved in the following the two methodologies presented in the next sections. 

FREQ 
This method was implemented in the work by Alves et al., 2011. The Least Squares (LS) Method is solved using the 
MatLab function invfreqs (Mathworks, n.d.). This function linearizes the optimization problem 24, using weight 
factors for the most important range of frequencies: 

𝜃 = arg min
𝜃
�𝑤𝑙 �𝐾𝑖𝑗(𝑠) − 𝐾�𝑖𝑗(𝑠,𝜃)�

2

𝑙

 25 

Where 𝑤𝑙  is a user defined weighting vector with entries between 0 and 1 for each frequency. The linearization 
method used by the function invfreqs is based on the Levy method (Levy, 1959) and solved interactively 
(Sanathanan & Koerner, 1963). Equation 25 is re-written in the linear form: 

𝜃𝑝 = arg min
𝜃
�𝑤𝑙𝑠𝑙,𝑝 �𝑄�𝑖𝑗(𝑠,𝜃)𝐾𝑖𝑗(𝑠) − 𝑃�𝑖𝑗(𝑠,𝜃)�

2

𝑙

 26 

Where 

𝑠𝑙,𝑝 =
1

�𝑄�𝑖𝑗�𝑠,𝜃𝑝−1��
 27 

The iterative method converges after 𝑝 = 10 to 20 steps, when 𝑄�𝑖𝑗�𝑠,𝜃𝑝� ≈ 𝑄�𝑖𝑗�𝑠,𝜃𝑝−1�.  
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The order of the transfer function is determined using an automatic routine. The problem is initialized using a 2nd 
order function, with the form 

𝐾�𝑖𝑗𝑚𝑖𝑛(𝑠) = 𝑝1𝑠+𝑝0
𝑠2+𝑞1𝑠+𝑞0

’ 28 

in order to guarantee the second propriety of Table 1 (see the section Proprieties of the parametric models). For 
each solution of the Least Squares Method, the quality of the fit is evaluated using the parameter 𝑅2, calculated by 
equation 22. If the parameter 𝑅2 is smaller than the user defined value, the order of both the denominator and 
numerator of the transfer function is increase, to fulfill the previously mention propriety. Once the transfer 
function is found, it is easy to determine the equivalent state-space model using the function tf2ss. Please refer to 
(Alves, et al., 2011) and (Alves, 2012) for more detail.  

FDI TOOLBOX 
The program incorporated the Frequency Domain Identification (FDI) Toolbox developed by (Perez & Fossen, 
2009). This is a user-free toolbox and can be downloaded at www.marinecontrol.org.  

This method is based on a similar approach as the one described in the previous section. However, three different 
methods are available to solve the optimization problem 25: 

• The first method is equivalent to the one presented in the previous section, using a linearize LS 
minimization; 

• In the second method an iterative linear LS problem is solved, using the as weight factors the previous 
denominator values; 

• This last solves the non-linear LS problem, using a Gauss-Newton algorithm. 

All the methods presented before use the function invfreqs. The iteratively linear LS problem provides the best 
computational time/accuracy relation and was the one chosen for this work according to the recommendations in 
Perez & Fossen, 2009. The toolbox uses the following algorithm in order to take into account the proprieties of the 
retardation functions described before Perez & Fossen, 2011: 

1. Set the appropriate range of frequencies according to the user defined weight factors; 
2. Scale the data:  

𝐾�𝑖𝑗′ = 𝛼𝐾�𝑖𝑗 ;      𝛼 = 1
max �𝐾𝑖𝑗�

  29 

3. Select the order of the approximation 𝑛 = deg �𝑄�𝑖𝑗(𝑠,𝜃)�. The minimum order approximation 𝑛 = 2 is 

the starting point.  
4. Estimate the parameters 𝜃 using the iterative LS method, according to 

𝜃𝑝 = arg min
𝜃
��

𝐾𝑖𝑗(𝑠)
𝑠

−
𝑃�𝑖𝑗(𝑠,𝜃)
𝑄�𝑖𝑗(𝑠,𝜃)

�
𝑙

 30 

5. Check stability by computing the roots of 𝑄�𝑖𝑗(𝑠,𝜃) (poles of the system) and change the real part of these 
roots with positive real part to a negative real part.  

6. Construct the desired transfer function by scaling and incorporate the s factor in the numerator:  

𝐾�𝑖𝑗′ = 𝛼
𝑠𝑃�𝑖𝑗(𝑠,𝜃)
𝑄�𝑖𝑗(𝑠,𝜃)

 31 

7. Estimate the added mass and damping based on the identified parametric approximation via  

http://www.marinecontrol.org/
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�̃�(𝜔) = 𝐼𝑚�𝐾�𝑖𝑗 � + 𝐴(∞) 
𝐵�(𝜔) = ℜ𝑒�𝐾�𝑖𝑗 � 

32 

and compare with the 𝐴(𝜔) and B(𝜔) given by the 3d radiation/diffraction code. The quality of the fit is 
assessed using the parameter 𝑅2, through equation 22 for the added mass and damping coefficients. If 
the fitting is not satisfactory increase the order of the approximation and go back to step (3).  

8. Check for passivity if required ℜ𝑒�𝐾�𝑖𝑖(𝑠,𝜃)� > 0 

Step 4 of the procedure ensures that the first propriety of Table 1 is fulfilled. The second and third proprieties are 
fulfilled ensuring that the relative order of the functions is always one. The stability of the system is forced in step 
5, and the passivity is verified in step 8. So this method ensures that most of the proprieties in table 1 are met, 
incorporating this a priori knowledge in fitted functions. This ensures a more accurate transfer function with a 
lower order. From the transfer functions it is once again easy to obtain the state-space model (tf2ss.m). 

TIME DOMAIN METHODS 
The identification of the state-space models can have as reference the impulse-response function of the 
retardation matrix, as presented in Figure 3. The conversion to time domain adds an additional error into the 
fitting method, due to the IFFT transformation. However this can be minimize, depending on the method to 
convert 𝐾𝑖𝑗(𝜔) into time domain. One can compute the time-domain retardation function using:  

𝐾𝑖𝑗(𝑡) = 𝐼𝐹𝐹𝑇 �𝐾𝑖𝑗(𝜔)� 33 

This method is however limited by the Nyquist frequency. Due to the limited range of frequency usually used in 
the numerical codes, the discretization of 𝐾𝑖𝑗(𝑡) will be evenly spaced and computed from 0 to high values of 𝑡. 
This means that there will be fewer points describing the functions for low values of 𝑡, where the impulse-response 
𝐾𝑖𝑗(𝑡) has a higher magnitude. 

An alternative method to compute the impulse-response function of the retardation matrix is to use the cosine 
transformed described in equation 10. This was implemented using a trapezoidal integration method, as described 
in (Kristansen & Egeland, 2003): 

𝐾𝑖𝑗(𝑡) =
∆𝜔
𝜋 � 2𝐵𝑖𝑗(𝑘∆𝜔) cos(𝑘∆𝜔𝑡)

𝑘𝑚𝑎𝑥−1

𝑘=1

+
∆𝜔
𝜋 �𝐵𝑖𝑗(0) + 𝐵𝑖𝑗(𝑘𝑚𝑎𝑥) cos(𝑘𝑚𝑎𝑥∆𝜔𝑡)� 34 

Where 𝑘𝑚𝑎𝑥  is number of entries of the frequency vector computed by the numerical code. The step size used is 
determine by the length of the frequency vector, which is equally spaced using 256 points (e.g. for 𝑘𝑚𝑎𝑥∆𝜔 =
5𝑟𝑎𝑑/𝑠,  ∆𝜔 ≅ 0.02). The upper limit is taken to be 𝑇 = 100𝑠, and the time step used was ∆𝑡 = 0.1𝑠.  

This last method is used in the SS_Fitting code to compute the impulse-response function, necessary to implement 
the following time domain methods. 

LEAST SQUARES METHOD 
This method relies on a LS method to determine the realization of the retardation function. This method was also 
implemented in the work by Alves, et al., 2011.  
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It is based on the MatLab function prony. This function uses the z-transform to find an approximation to the 
impulse response function based on a combination of exponential functions in the time domain. The function 
returns the coefficients of numerator 𝑏[𝑘] and denominator 𝑎[𝑙] of the discrete rational system 

𝐻(𝑧) =
∑ 𝑏[𝑘]𝑧−𝑘𝑞
𝑘=0

1 + ∑ 𝑎[𝑙]𝑧−𝑘𝑝
𝑙=0

 35 

From the transfer functions it is once again easy to obtain the state-space model (tf2ss.m).  

The discrete transfer function needs to be converted to the continuous time domain, using the function d2c, with 
the Tustin method. However, for complex high order retardation functions, this not ensures the stability of the 
resulting state-space model.  

The order of the transfer function is determined assessing the quality of the fit using the 𝑅2 value, as described 
previously. If the model does not fulfill the minimum required user defined value, the method is run again using a 
higher order rational function.  

REALIZATION THEORY 
Once the impulse-response function is obtained using 34, the identification scheme based on Hankel Singular 
Value Decomposition (SVD) is applied. This method was proposed by Kung, 1978 and is available in the MatLab 
function imp2ss. For a detailed description of the SVD method one should consult (Kung, 1978). 

The method outputs the equivalent state-space system, 𝐴𝚤𝚥����, 𝐵𝚤𝚥���� , 𝐶𝚤𝚥���� and 𝐷𝚤𝚥����,which need to be scaled according to 
the time step used in 𝐾𝑖𝑗(𝑡): 

𝐴𝑖𝑗 = 𝐴𝚤𝚥���� , 𝐵𝑖𝑗 = 𝐵𝚤𝚥���� , 𝐶𝑖𝑗 = 𝐶𝚤𝚥����∆𝑡  𝐷𝑖𝑗 = 𝐷𝚤𝚥����. 0 = 0  36 

The matrix 𝐷𝑖𝑗  is forced to be zero, in order to keep the causality of the system. Despite the reduction option built-
in the imp2ss function, this proves to be not satisfactory way to control the accuracy and order of the fitted model. 
The function produces very accurate models (𝑅2 > 0.99), using however with a very high orders (𝑛 > 200). 
However, the computations of the Hankel singular values revealed that only a small number of states have a 
significant energy value (e.g. Figure 4). In the example it is clear that the first two singular values have an absolute 
value much higher than all the others. In fact, this function can be approximated with a second order system with 
𝑅2 > 0.98. 

In order to obtain a low order model, the reduction of the number of states was implemented using the function 
balmr. This function can be applied using two methods. Using the manual method, the user chooses the number of 
states to keep, based on the Hankel Singular Values plot. Moreover an automated method was also implemented, 
using the goodness of the fit 𝑅2 calculated with equation 22, for the impulse-response function. The method 
reduces the number of states to a second order function, and then increases the order of the system until the 
user-defined goodness is achieved. 
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FIGURE 4: HANKEL SINGULAR VALUES OF THE IMPULSE-RESPONSE FUNCTION SURGE-SURGE FOR THE OC3HYWIND SPAR BUOY. 

MATRIX ASSEMBLY 
Using the above described methods, a set of state-space systems are obtained, one for each significant entry of 
the retardation matrix 𝐾. We obtain several state-space systems, according to: 

𝜇𝑖𝑗 = � 𝐾𝑖𝑗(𝑡 − 𝜏)�̇�𝛿𝜏
𝑡

0
≅ �

�̇�𝑖𝑗 = 𝐴𝑖𝑗𝑥𝑖𝑗 + 𝐵𝑖𝑗𝑞�̇�
𝜇 = 𝐶𝑖𝑗𝑥𝑖𝑗

 
37 
 

where the subscripts 𝑖 and 𝑗 vary from 1 to  𝑚, where 𝑚 is the number of rigid-body platform degrees of freedom 
enabled (up to 6). This equation and the others below do not follow Einstein notation. The retardation matrix 𝐾 is 
a 𝑚 by 𝑚 matrix. For most of the floating bodies, only the main diagonal and some off-diagonal terms of the 
retardation matrix are non-negligible. The size of each matrices 𝐴𝑖𝑗, 𝐵𝑖𝑗  and 𝐶𝑖𝑗  are respectively �𝑛𝑖𝑗 × 𝑛𝑖𝑗�, �𝑛𝑖𝑗 ×
1� and �1 × 𝑛𝑖𝑗�, where 𝑛𝑖𝑗  is the number of states used to approximate the entry 𝐾𝑖𝑗 .  These matrices may or may 
not be full depending on the identification method.  The size of 𝑥𝑖𝑗  is �𝑛𝑖𝑗 × 1�. 

In order to obtain the complete state-space system, each of the matrices 𝐴𝑖𝑗, 𝐵𝑖𝑗  and 𝐶𝑖𝑗  have to be assembled 
into a global state-space system according to the following equations: 

𝑥�̇� = 𝐴𝑟𝑥𝑟 + 𝐵𝑟�̇�  
𝜇 = 𝐶𝑟𝑥𝑟 

 

𝐴𝑟 = [𝑛 × 𝑛] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
[𝐴11]

⋱
[𝐴1𝑚]

[𝐴22]
[𝐴21]

⋱
[𝐴2𝑚]

⋱
[𝐴𝑚𝑚]

[𝐴𝑚1]
⋱

[𝐴𝑚𝑚−1]⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , 
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 𝐵𝑟 = [𝑛 × 𝑚] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

[𝐵11]
⋮

[𝐵1𝑚]

          
[𝐵22]
[𝐵21]
⋮

[𝐵2𝑚] ⋱
[𝐵𝑚𝑚]
[𝐵𝑚1]
⋮

[𝐵𝑚𝑚−1]⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , 

 

𝐶𝑟 = [𝑚 × 𝑛] = −

⎣
⎢
⎢
⎢
⎢
⎡
[𝐶11]

[𝐶12]
⋱

[𝐶21]
     [𝐶22]

[𝐶23]
⋱

[𝐶1𝑚]               [𝐶2𝑚]

⋯

[𝐶1𝑚]

⋱

[𝐶𝑚𝑚]
[𝐶𝑚𝑚−1]

⎦
⎥
⎥
⎥
⎥
⎤

 ,        

 

𝑥𝑟 = [𝑛 × 1] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

[𝑥11]
⋮

[𝑥1𝑚]
[𝑥22]
[𝑥21]
⋮

[𝑥2𝑚]
[𝑥𝑚𝑚]
[𝑥𝑚1]
⋮

[𝑥𝑚𝑚−1]⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                  �̇� = [𝑚 × 1] =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ �̇�1
�̇�2
⋮

�̇�𝑚⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
where 𝑛 describes the total number of radiation states, and 𝑚 the number of platform dof’s. The matrices are 
ordered by the first subscript, and the diagonal term [𝑥𝑖𝑖] always appears first , followed by the other cross terms 
with the same index �𝑥𝑖𝑗�. Note that the minus sign on the matrix 𝐶𝑟 accounts for the minus sign on the memory 
effects on equation 3. 

FAST INTEGRATION 
As described in the introduction, SS_Fitting enables the use of the new FAST state-space module: SS_Radiation 
(Duarte & Jonkman, 2012). Therefore this routine should be used as a pre-processor, in order to generate the 
required “name.ss” input files, containing the matrices 𝐴𝑟, 𝐵𝑟  and 𝐶𝑟. 

 

FIGURE 5: MATLAB PRE-PROCESSOR AND REQUIRED FILES. 

 

WAMIT 
Files “.1” 

Pre-processor 
(SS_Fitting) FAST 

State-Space 
Model “.ss” 

Aerodyn 

Hydrodyn 

Other WAMIT Files 



14 
 

USER GUIDE 

RETRIEVING FILES FROM THE ARCHIVE 
You can download the ss_fitting archive from our web server at 
http://wind.nrel.gov/designcodes/postprocessors/SS_Fitting. The file has a name similar to SS_fitting_v1.00.00.exe, 
but may have a different version number. Create an SS_fitting folder somewhere on your file system and put this 
file there. When you double click on the archive from Windows Explorer, it will create some files and folders. To 
use the scripts, you need to add SS_Fitting’s Source, folder to the MatLab search path.  

DISTRIBUTED FILES 
SS_Fitting includes the following files: 

Change_log.txt Log file with the updates of the current version 
Disclaimer.txt Disclaimer file 
SS_Fitting_Manual.pdf Theory and User Manual (this document) 
SS_Fitting_Options.inp Sample input file with user defined options 
Source/SS_Fitting.m Main MatLab File 
Source/Radiation.m MatLab routine responsible to fit the retardation function models 
Source/FDI_Toolbox/** Folder containing the adapted files from the FDI toolbox1 
Verification/Verification_Routine.m Verification routine with comparisons of the several methods 
Verification/Inertia.m Used by the verification routine 
Verification/Hydrostatic.m Used by the verification routine 
Verification/spar_097/** Folder containing the results files using the OC3Hywind spar buoy as 

reference platform, and R2=0.97 
Verification/spar_099/** Folder containing the results files using the OC3Hywind spar buoy as 

reference platform, and R2=0.99 
Verification/marin_semi_097/** Folder containing the results files using the OC4 Semi-submersible as 

reference platform, and R2=0.97 

RUNNING SS_FITTING 
To run SS_Fitting it is require to have a MatLab license and access to the Control Systems toolbox. Depending on 
the method chosen, additional toolboxes are required. The frequency domain methods use the invfreqs function, 
available in the Signal Processing Toolbox. The time-domain Least Squares method uses the function prony, 
available in the Control Systems toolbox. Finally to use the time-domain realization theory method, the user must 
have a license to the Robust Control Toolbox.  

Before running SS_Fitting, make sure that SS_Fitting Source is in the MatLab search path. The user should define all 
the inputs using the input file “name.inp”. Please refer to the following section for details on the input file. 

Write ss_fitting(‘name.inp’) on the MatLab command window. ‘name.inp’ can include the absolute or relative 
path. The program should run and the chosen fitting method should appear on the screen. If the program runs 
successfully the message “Results saved in Location …” should appear on the command window. The results were 
written in an ACSIS file call “platform_name.ss”, within the WAMIT file location. This contains the state-space 
matrices Ar, Br, and Cr of the radiation state space model. 

                                                                 
1 (Perez & Fossen, 2009) www.marinecontrol.org 

http://www.marinecontrol.org/
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THE INPUT FILE 
The input file determines the program options, including the method used to compute the fitting. Please use the 
supplied example file as a reference. The file must contain the following lines: 

Option Variable Name Description 
Header Line - Line containing the file title 
File location Rad.FileName Base name and location of the WAMIT files for the desired 

platform. The location can be absolute or relative to the 
SS_Fitting folder. 

DoF Vector gp.DoF [1x6] Vector containing 0 or 1 if the correspondent platform 
degree of freedom is enabled or not. It follows the order 
Surge, Sway, Heave, Roll, Pitch and Yaw. For a 6 DoF 
platform use [1,1,1,1,1,1]. 

Frequency Range Rad.twr Typical range of frequencies that appear during time-
domain simulation. This most important range will be 
weighted in the fitting with the weight factor defined 
below. 

Weight factor Rad.wwf Weight factor for the defined frequency range, between 0 
and 1. If 1 is chosen than only the frequencies within the 
defined range are evaluated for the goodness of the fit, 
neglecting frequencies outside the defined range. 

Identification Method Rad.tfi Identification method to be used: 
1. Freq. Domain Identification 
2. FDI Toolbox 
3. Time-Domain LS method 
4. Time-Domain Realization theory2 

Fit Accuracy Rad.fit Minimum 𝑅2 value to be satisfied by the fit. Use this value 
to control the accuracy and order of the fit. It should be 
between 0.95 < 𝑅2 < 0.99 . 

Plot flag Rad.ppmf Enable (0 or 1) to plot the retardation response. Either in 
the frequency- or time-domain according to the method 
chosen. 

Reduction Mode flag Rad.fmt (0 or 1) to chosen use a manual or automatic order 
reduction scheme. Only used with Time-Domain Realization 
theory method. 

Please refer to the previous sections for details about the different methods implemented. 

  

FIGURE 6: SAMPLE INPUT FILE. 

OUTPUT FILE 
                                                                 
2 Please refer to (Duarte, et al., 2013) for more details on the quality of the methods. 



16 
 

The output file contains the matrices 𝐴𝑟, 𝐵𝑟  and 𝐶𝑟 of the state-space system: 

𝑥�̇� = 𝐴𝑟𝑥𝑟 + 𝐵𝑟�̇�𝑝𝑙𝑎𝑡 
𝜇 = 𝐶𝑟𝑥𝑟 

39 

with the following dimensions: 

𝐴𝑟 = [𝑛 × 𝑛] ,     𝐵𝑟 = [𝑛 × 𝑚] , 𝐶𝑟 = [𝑚 × 𝑛],       𝑥𝑟 = [𝑛 × 1] 
 

40 

Where 𝑛 is the number of radiation states and 𝑚 is the number of dof’s enabled. The file also contains a header 
line, containing the program version and the date in which it was run. It also contains the enabled DoF’s, the 
number of states, and the number of states per degree of freedom. These variables are used by the FAST 
SS_Radiation module. In order to run FAST using this module, the output file *.ss should be present in the same 
folder of the other WAMIT files. 

 

FIGURE 7: SAMPLE OUTPUT FILE. 

VERIFICATION ROUTINE 
The archive includes a MatLab routine that plots the results of the different methods for different platforms. To 
run the script, write Verification in the MatLab command window, making sure that the folder Verification is the 
MatLab current folder. Three tests are available: 

spar_097 Comparison for the OC3Hywind spar buoy using 𝑅2 value equal to 0.97 
spar_099 Comparison for the OC3Hywind spar buoy using 𝑅2 value equal to 0.99 
Marin_semi_097 Comparison for the OC4 Marin semi-submersible platform, using 𝑅2 value 

equal to 0.97 
The routine plots for the different significant entries of the retardation matrix, the frequency domain and time 
domain response functions and the recalculated added mass and damping matrices for each method, from 
equation 7. 

From the results shown and further discussed in (Duarte, et al., 2013), we recommend that the user chooses 
between the FDI or the Realization theory methods.  

FUTURE WORK 
Future work will include the verification of the results and comparison of the different methods. Some of them 
maybe removed from the program if the results are not satisfactory.  
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NREL supported the integration of this method within FAST.  
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FEEDBACK 
If you have problems with SS_Fitting, please contact Tiago Duarte. Please send your comments or bug reports to:  

Tiago Duarte (Email: tduarte@hidro1.ist.utl.pt)  
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